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In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the
satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to vayiables,
=M/N. We introduce a set of macroscopic parametnsdscapesand put forward an ansatz of universality
for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap
as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite
set of macroscopic variablémstead ofonly energy is used, and are able to show the existence of a dynamic
thresholdy= vy starting with some value d{—the number of variables in each clause. Beyond the dynamic
threshold, the algorithm should take an exponentially long time to find a solution. We compare the results for
extended and simplified sets of landscapes and provide numerical evidence in support of our universality
ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations
significantly reduced. This enabled us to obtain tight upper bounds on the satisfiability transition and to
recompute the dynamical transition using the extended set of landscapes.
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[. INTRODUCTION applications of methods of classical statistical mechaf8¢s
to optimization problems. Recently ideas from the replica

An important open question in the field of quantum com- - f classical spin al full lied t
puting is whether it is possible to develop quantum algo- eory of classical spin giasses were successiully applied to

rithms capable of efficiently solving combinatorial optimiza- the des_|gn of novel algorithmt]. It is only na_tural to ex-
tion problemg(COP. In the simplest case the task in a COPtend this work to the quantum rgqlm. Ing]eed, in the language
is to minimize the costenergy function E_, with the domain O.f quantum computation _the minimization of the cost fun_c-
given by the set of all possible assignmentsNofbinary tion is equivalent to finding the ground state of a Hamil-
variables,o={o, ... ,0\}, 0y=%1. The energy function pos- tonianHe,

sesses the locality property: it can be written as a sum of Hp= > E,lo)a], (2)
functions, each involvingO(1) binary variables. One ex- o

ample from physics is an Ising model, where the energy is L .
given by the sum over pairs of interacting spins where the summation is over thé' 2tates|o) forming the

computational basis of a quantum computer vitlgubits.

E,= > Jxoio. (1) A new family of quantum adiabatic evolution algorithms
(ik) has been recently proposed by Farhi and co-worke)§.

. . . .._..... This algorithm can be thought of as a quantum analogue of

Another example from computer science is the sat|sf|:31b|lltythe simulated annealing algorithm. Numerical simulations

groobllem. E%(I:h tem:j of thle e_rtlﬁrgyofl;nction ti)nvotlyb’s jwere performed to study its performance for satisfiability
=0O(1) variables, and equals either 0 for combinations o roblems[7]. Note that owing to the locality property, effi-

variables fchat are allowed, or 1 for combinations that violat€jo ¢ implementation of these algorithms on a quantum com-
a constralnt._The energy fqncnon then corres.ponds. to th uting device is feasiblg5,8,9. Simulations of quantum
”“”?ber of V|?Iateq g:lonstramts an((jj'the task is to r:md ahdiabatic evolution algorithm@AA) for theseNP-complete
a;]s&gnmentho variables cor_re%pon g1gl_3rﬁ0 or _tc;_ Sb'(lj'w problems on a classical computer for randomly generated
that no such assignment exig&y;,>0). The satisfiability  opjem instances that are hard for classical algorithms were

problem belongs to the huge class of hawé-complete  herformed for small instancesl< 25) [6,7,10. Results sug-
problems[1]. The time needed to solve these problems

v WithN usi he best k Iassical gest aquadraticscaling law of the run time of the QAA with
grows exponentially witt using the best known classical \ Rrecent experimentfll] on quantum annealing of the
algorithms. The quantum computer emerges as a viable

. d wheth | bl b ved isordered ferromagnet LiHY%,_,F, show that quantum an-
ternative, and whethexP-complete problems can be solved ,\o5jing dramatically outperforms its classical counterpart,

efficiently on a quantum computer is a central open queStiorlhermal annealing. Note that the experimental realization of

(éon_nectlor_ws llaetween physics Iand dcomputer smzn(;]e Welfe algorithm is not prone to finite-size artifacts that may cast
made in seminal papers on simulated annealfjgand the 4ot on results of computer simulations. In other Monte

Carlo simulations of the quantum annealing algorithm on a
classical computer, it was shown to be superior to thermal

*Electronic address: Vadim.N.Smelyanskiy@nasa.gov annealing12]. Note that the performance increase would be
"Electronic address: knysh@email.arc.nasa.gov much larger if quantum annealing were implemented on a
*Electronic address: rdm@email.arc.nasa.gov guantum computing device. The general consensus is that the
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I====== , least one bit assignment that satisfies all the constraints
i (E4=0). For y> v, instances are almost never satisfiable. In
: the asymptotic limitN— oo the proportion of satisfiable in-

) stances drops from 1 to 0O infinitely steeply,at y, as shown
|

|

|

|

77/ Thoax

in Fig. 1.

The value ofyy (unlike y.) depends on both the problem
Ol V. at hand and the optimization algorithm. Recent years have

Ye seen a growing interest in the study of dynamic threshold
M/N phenomena for local search algorithfii§,20. That effort is

in its initial stage and simple approximatiofis the spirit of
annealing approximationsvere employed to estimate the
location of the threshold. Comparison of the dynamical
thresholdsy, for different algorithms provides an important
relative measure of their typical-case performance in a given
speedup is due to the effects of quantum tunneling betweeproplem.
states separated by higbut thin) barriers, impenetrable for ~ Thjs paper is organized as follows. In Sec. Il we introduce
systems obeying classical dynam[6s11,13. the Quantum Adiabatic Evolution algorithm and explain how

Despite evidence for advantages of QAA over traditionalthe complexity of the algorithm depends on the spectrum of
methods, no theoretical investigations into its performancghe Hamiltonian. In Sec. Ill we formulate the quasiclassical
were made except for simple mod€ls4]. We choose to  gpproximation used to study the complexity and introduce
investigate this for a random hypergraph model, which ishe notion of landscapes. In Sec. IV we introduce positive
believed to describe real-world examples fairly well. In prac-K-NAE SAT and positive 1-ifk SAT—the NP-complete
tice, algorithms foNP-complete problems are characterized problems, which we use as a test-bed for our method. In Sec.
by a wide range of running times, from linear to exponential,y we provide detailed computation of entropy and land-
depending on the choice of certain control parameters of thgcapes within the annealing approximation. We discuss the
problem(e.g., in satisfiability it is the ratio of the number of ynjversality of landscape probability distributions in Sec. VI.
constraints to the number of variabléd/N). Therefore, a  Sections VII and VIII are devoted to improving the anneal-
practically important alternative to the worst case complexitying bound. A subgraph responsible for the hardest part of the
analysis is the study of a typical-case behavior of optimizaproblem(a corg is identified and results are rederived for the
tion algorithms on ensembles of randomly generated probsybgraph. In all cases we are concerned with finding the
lem instances chosen from a given probability distribution.dynamic threshold—the critical ratio of clauses to variables
For the example of the Exact Cover problem considered iyhove which the algorithm is expected to take an exponen-
[6] (also called positive 1-in-3 SAT ifiL5]), one can define a tjally long time to find a solution. We discuss our results as
uniform ensemble of random problem instances. For eaclyell as possible ramifications and extensions of our work in
one ofM constraints we choose at random three variables, sghe ConclusiongSec. 1X. In the Appendix we sketch a
that all combinations of variables have equal probablllty Ofproof of NP_Comp|eteness of the prob|ems considered.
1/('3) and the constraints are statistically independent.

Anticipating an exponential scaling law for the algo-
rithm’s running timest, it is convenient to analyze the dis- !l QUANTUM ADIABATIC EVOLUTION ALGORITHM

tribution of a normalized logarithmic quantity lag/N. This Consider the time-dependent Hamiltoniaft) = #(t/T)
distribution becomes increasingly narrow in the limit of large '
N where the mean valudogt,)/N well characterizes the

typical case exponential complexity of an algorithm. For the
satisfiability problem the dependence of the asymptotigNhere =t/Te

FIG. 1. Solid line shows the qualitative plot of the normalized
quantity 7/ 7max VS M/N (7max IS @ maximum value ofy). Dashed
line shows the proportion of satisfiable instancesv&N.

H(1)=(1-7nHg+ mHp, (4)

(0,1 is dimensionless “time,"Hp is the

quantity “problem” Hamiltonian (2) and Hg is a “driver” Hamil-
7= lim (log t,)/N (3) tonian, that is designed to cause transitions between the
N—oo & eigenstates of{p. Using dimensionless time and settirfig

) ) o =1 the quantum state evolution obeys the equation,
on the clause-to-variable ratip=M/N has the qualitative 1w (7))/ar=1(7)|¥ (7). At the initial moment the quan-

form shown in Fig. 1. At some critical valug=yq algorith- ) statelw(0)) is prepared to be the ground state?f0)
mic complexity undergoes the dynamical transition from:HB_ In the simplest case

polynomial to exponential scaling law. This transition has
been studied recently for the case of a variant of the classical N
randolm—walk glgonthm for the .sat|sf|ab|I|ty prob_Ie[nG]. . Hg=— > o, |¥(0))= 2 N2> o), (5)
Function %(y) is nonmonotonic iny and reaches its maxi- =1 s

mum at a certain poiny,.> yg. It was discovered some time _

ago[17-19 that y, is a critical value for the so-called satis- whered}, is a Pauli matrix forjth qubit. Consider the instan-
fiability phase transition: ify<y., a randomly drawn in- taneous eigenstates ®f(7) with eigenvalues\,(7) arranged
stance is satisfiable with high probability, i.e., there exists ain nondecreasing order at any valuem (0, 1),
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H(D| (D) = N(D| (D), (6)  ration o onto a vectof X} with integer-valued components.
) Prior to considering a specific COP here we make certain
herek=0,1,2,...,2-1. Provided the value dF (the run- assumptions about the properties of landscapes and apply

time of the algorithmis large enough and there is a finite {hem to the analysis of the minimum gap in the QAA.

gap for all 7 (0,1) between the ground and excited state |, particular, we assume that, similar to energy, land-
energies,\1(7) ~A\o(7) >0, the quantum evolution is adia- scapegX,=C,(o,7)} are macroscopic functions, so that the
batic and the state of the systeff(7)) stays close to an typical values ofX, are O(N), and possess a certaimiver-
instantaneous ground statehy(7)) (up to a phase factdr  gajity property in the asymptotic limiN— . Specifically,
The statg¢o(1)) coincides with the ground state of the prob- the joint distribution of{C,(c-,Z)} over the spin configura-
lem HamiltonianHp and, therefore, a measurement per-tions ¢ forming the 1-spin-flip neighborhood of an “ances-
formed on the quantum computer at the final moment tor” configuratione’ depends on a problem instan€eand
=T (r=1) will yield one of the solutions of the COP with spin configurationo”’ only via the set of parametergX;

large probability. =C(0”,7)}. We then define a quantity
The standard criterion for adiabatic evolution is usually

formulated in terms of minimum excitation gap between the , 1 *
ground and first excited stat¢21] PUXMIX =< X E aX,Ci(o,D)],
d(o,0')=1K=
&
T> , ANmin= max[\y(7) =\ . 7
Ahrznin min OSTﬁl[ 1(7) o(7)] (7) Xl, =C(0',T). (11)

Here the quantity is less than the largest eigenvalue of the|n effect, the above universality property of landscapes im-
operatorHp—"Hg [14] and scales polynomially withl in the  plies that the set of all possible spin configuratiomsis

problems we consider. divided into “boxes” with coordinategX;} whereX,=C,(o),
and P({X}|[{X/}) (11) represents the transition probability
IIl. QUASICLASSICAL APPROXIMATION AND from box{X;} to box{X{}. In particular, it obeys Bayes' rule

COMBINATORIAL LANDSCAPES PO DX = PUXXDQAXD,  (12)
whereQ({X}) is the number of different spin configurations

H=1> E,o)o|-(1-7 > ddo,e),1]e)e], in the box{X;}.
o oo We consider energy to be a smooth function of landscapes

In the computational basi®) we have

® E,=E(X}). X=C(oD), (13)
here {m,n] denotes the Kronecker delta-symbol and theso that| 9E/ 3%| =O(1).
summation is over the pairs of spin configuratianand o’ '
that differ by the orientation of a single spid(o, o) =1,
where

Furthermore, we assume that, on one
hand, the change i€(o,7) after flipping one spin i©(1),
for typical problem instances. On the other hand, we assume
that correlation properties in a neighborhood of a K&y
1 N described byP({X;}|{X/}) vary smoothly with box coordi-
d(o,0') ==, oy = g, (9)  nates on a scalet|8X;| <N. Therefore if we write the tran-
2j sition probability in the form

denotes a so-called Hamming distance between the spin con- PAXHXD = pAX = XbidxD),  {x=XIN}, (1)
figurationso and o', that is the number of spins with oppo- A AT A AT
site orientations. Equatio6) in the computational basis thenp({k};{x}) is a steep function of its first argument: it

takes form decays rapidly in the range<l|k;| <N for eachl-component.
) However this is a smooth function of its second argument: it
M) (1) = TE,bo() ~ (1= D2 dd(0,07), 1] ¢, (7) varies slightly when coordinates change on a scalgx|
o’ <1.
(10) One can show that under the above assumptions the quan-

L tum amplitudesp,, corresponding to the smallest eigenvalue
(here we drop the subscript indicating the number of a quangeneng on the spin configuratianonly via the coordinates

Ilm state in?\ and ¢,). In what follows Wwe assume that o thig box{X;} to which it belongs. Then we look for the
typical energie€,=0O(N), but the change in the energy after solution of Eq.(10) in the following form:
a single spin flip iSO(1). This assumption about the energy

landscape holds for instances of the satisfiability problem o({X}, 7
with the clause-to-variable ratiM/N=0(1), the case of ¢«r(7):m, X =C(o,D)}, (15
most interest for ugsee the discussion in Seg. | ‘ '

We now consider a set of functionsX,=Ci(o,7), | where|e({X;}, 7)|? gives the probability of finding the system

=1,... K}, referred to agcombinatorial landscapes, that in the box{X;}. Plugging Eq.(15) into Eq.(10) and making
depend on a problem instanZeand project a spin configu- use of Eqs(12) and(13) we obtain:
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ND(X, ) = FE(X) (X, 7) = (1 = INZ L( X, X (X', 7),
"y
(16)

X= {X11X21 e ’X/C} (17)

(hereafter we use the above shorthand notation for the set
landscapes In (16) we introduced

L(X,X")=L(X',X) =P(X'|X) "’
P(X) = 27NQ(X), (18)

where P(X) is a probability that a randomly sampled con-
figuration o belongs to a boX. We shall look for a solution
of (16) in the WKB-like form

o(X,7) =exd-W(X, 7], (19
so that
A7) = 7E(X) = (1 = DN L(X, X )eMXn-Wx"n)
'

(20

We now introduce scaled variablgsf. (14)]
x=2, r=22T g=X (21

N T ™

and also

w(x,I") = %W(X,r), e(x) = %E(X), S(x) = %Iog Q(X),

(22)

where s(x) is an entropy function. Based gi8) and the
properties of the transition probabilifgee Eq.(14) and the
discussion after jtwe assume that the sum ovéf in (20) is
dominated by terms withX’ =X |=0(1). Then we can use an
approximation

W(X',7) = W(X,7) = Vw - (X' =X) +O(LIN), (23

where Vw= ow(x,I")/dx. Plugging(23) into (20) and mak-
ing use of Eqs(14), (18), (21), and (22) we obtain after
some transformations:

g=h(x,Vw;I’),

h(x,p:T) = e(x) =T p(k;x)e * V20 (24)

k
[hereVs=ds(x)/dx]. This is a Hamilton-Jacobi equation for
an auxiliary mechanical system with coordinatesnomenta
p=Vw, actionw, Hamiltonian functiorh(x,p;I") and energy
g. Using the symmetry relation

p(k;x)e V92 = p(—k;x)e 792, (25)

that follows directly from Eqs(12) and(18) we obtain that
the minimum ofw(x,I") over x where Vw=0 necessarily

PHYSICAL REVIEW E70, 036702(2004

corresponds to the minimum of the functional:
f(x,I) =e(x) =T'€(x),
wheref(x,I'’)=h(x,0,I") and

€(x) =P(Vs2;x), Ply;x) = > pk;x)e®y. (27
k

(26)

of
The summation ir24) and(27) is over componentk; of k

in the rangek € (—», ). In what follows, we shall refer to
P(y;x) in (27) as a “Laplace transform” gb(k ; x).

We note thatf(x)=2,,L(X’,X) and one can use Bayes
rule and the Cauchy-Bunyakovsky inequality 8) to show
that that the positive-valued functiafix) is bounded from
above, 0<{(x)<1. This shows that the analysis of the ef-
fective potential based on the WKB approximati#8) is
self-consistent in the asymptotic lindit— .

It follows from the above analysis that the ground-state
wave functiony(x,I")=@(X,7) is concentrated irx-space
near the bottom of the “effective potential” given by the
functional f(x,I"), i.e., near the poink«(I") where f(x,I")

reaches its minimum. In this regi@= 1/2xTAx, where ma-

trix A is positive definite, and according td9), the wave
function has a Gaussian form with widthl/yN.

The ground-state energy=g(I") is given by the value of
the effective potentiaf (26) at its minimum

g(I") = f(x«(I"), 1),

ADoKy, =0, fX,T)=0g@). (28

We note that a§"— 0 the shape of the effective potential
f(x,I") approaches that of the energy functigi) and there-
fore its minimumx. (I") — X, wherexg is a minimum ofe(x).

It can be shown that in this limit the ground-state eigenvalue
approaches the minimum energy valt(e,) and the eigen-
values ofA™! approach zergand so does the characteristic
width of the wavepacket)(x,I")]. The spin configurations
that belong to a box, in x-space correspond to the solutions
of the optimization problem at hand. It is clear that one of the
solutions can be recovered with high probability after a mea-
surement is performed at the end of the “quantum annealing”
procedure.

Variational ansatz:For cases in which the set of macro-
scopic variablegX} is not sufficient[in a statistical sense
(14)] to describe the dynamics of the quantum algorithm, one
can still implement the above procedure asagproxima-
tion, using a variational method. Introducing a Lagrangian
multiplier \, one looks for the minimum of the functional
F(o,N)=(p|H|p)—\({p|p)—1), using a variational ansatz
(15) for the wave function. The solution of the variational
problem is provided by Eq$19—28). The smallest eigen-
value g (28) corresponds to the value of the Lagrange mul-
tiplier at the extremumjh=7Ng, and the maximum of the
variational wave function corresponds to the minimum of the
effective potentialf (26).

Global bifurcations of the effective potentiblowever, in
the case of a global bifurcation where the effective potential
f(x,I') possesses degenerate or nearly degenerate global
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minima, the answer is modified. If for some valuelo#I's, (1 N). The mth row of G defines the subset of th€ binary
a global bifurcation occurs, in our example this would mean,ariaples involved in thenth clause. The second object is a
that for this value ofl’, two values ofx, x. andx. give &  set of boolean function8={b,}, with each function encod-
global minimum tof(x,I'). In such a case, the smallest ei- ;, a corresponding constraint. A  functionb,,
genvalue is not doubly degenerate; rather an exponentiallagbm[ag og og_]is defined over the set of*2pos-

: i i 1’ Yme’ T K
small gapAAmi, between the ground and first excited state iSgip|e agsignments of the string ifbinary variables involved
developed, itself being proportional to the overlap betweeny the mth clause. The function returns value 1 for assign-
two wave functions, peaked around andx., respectively.  mants of binary variables that satisfy the constraint and 0 for

_To estimate the overlap we note thatlatthe two global it assignments that violate it. Then the energy function
minima of the effective potentidi(x,I'«) correspond to the equals to the number of violated constraints

two coexisting fixed points of the Hamiltonian function in

(24) with zero momentum and the same values of engrgy M
E,=E =M-2b , y ey , (34

hereZ=(G,B) denotes an instance of a problem.

The matrixG defines a hypergrapé that is made up of
the set ofN vertices(corresponding to the variables in the
o problem) and a set oM hyperedgegcorresponding to the

dt'[x(t")p(t") = h(x(t"),p(t"))] + O(1/N), constraints of the problemeach one connecting vertices.
o An ensemble ofdisorder configurationof the hypergraph
(31) corresponds to all the possible ways one can pheeyN

) . . _ hyperedges amonly vertices where each hyperedge carries
where (x(t),p(t)) is a heteroclinic trajectory connecting the " yertices. Under the uniformity ansatz all configurations of

X=Xi, p=ps=0, gx,p;lx)=gi=g:.. (30

Then to logarithmic accuracy we have

1
NIOg Agmin =

two fixed points of(24) disorder are sampled with equal probabilitg., rows of the
x(t) = dhlap, p(t) =—ohlox, matrix G are independently and uniformly sampled in the
(1,N) intervall.

p(t— ) =0. (32) Boolean functi_onsbr_ﬂ may also be gen_erated at random
for each constraint with an example being rand&RSAT
From the algorithmic perspective this means that when problem[25,2§. However here we consider slightly differ-
gets close td'-, it has to change exponentially slowfgf.  ent versions of the random satisfiability problem that are still
Sec. Il and Eq(7)]. This could be called a critical slowing defined on a random hypergraghbut have a nonrandom
down in the vicinity of a quantum phase transition. If simu- boolean functionb,,=b, identical for all the clauses in a
lated annealingSA) is used and a similar phenomenon oc- problem. One of the problems is Positive 1KNSAT in
curs, the value of the temperatufe is the point where a which a constraint is satisfied if and only if exactly one bit is
global bifurcation occurs in the free energy functional equal to 1 and the othét—1 bits are equal to 0. The boolean
Fx,T) = &(x) = TS(X). (39) function b for this problem takes the form

By comparing the free energy function@3) with the func- b _s % l-a, 1
tional (26) corresponding to “quantum annealingdA), we [ay,ap, ... ] = '
note that in QA the quantitieE and €(x) play the roles of
temperature and entropy in SA, respectively. (Positive 1-inK SAT). (35
We note in passing that a similar picture for the onset of
global bifurcation that can lead to the failure of QA afud) ap=t1, p=12,...K.
SAwas proposed ifil4,22 for the case where the enerBy,
is @ nonmonotonic function of a single landscape paramete¥Ve shall also consider another problem, Positive
a total spinEj“zlcrj. In this case the dynamics of QA can be K-NAE-SAT, in which a clause is satisfied unless all vari-
described in terms of one-dimensional effective potentiabbles that appear in a clause are equal
[23,24. (“K-Not-All-Equal-SAT"). The boolean functiorb for this
problem takes the form

x(t— + o) =x3,

1 2

K
IV. THE MODELS 1+sa
) o . , blay,ap, ... ,a]=1- 2 5[2—92 ,0}
An instance of a satisfiability problem witk binary vari- s+1 | p=1
ables committed toM=vyN constraints(where each con- (Positivek NAE-SAT) (36)

straint is a clause involvingl variableg can be defined by

the specification of the following two objects. One of them ispoth problems areNP-complete (Appendix. It will be
an M X N matrix G, the rows of the matrix are independent shown below that they are characterized by the same set of
K-tuples of distinct bit indexes sampled from the intervallandscape functions.
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V. LANDSCAPES: ANNEALING APPROXIMATION tially many setgc, ,} that correspond to a macroscopic state

For a particular spirio) and disordefG) configurations, (@,{Ma})
all clauses can be divided intd* Aistinct groups according _ p _ _
to the values of the binary variables that appear in a clause. % TCok =0 % KaCok = Ma (P=0,1,... K). (42)
We will label the different types of clauses by vectorial index
a={ay, ... o}, ap=+1. We now divide the set of"2spin Coefficients{c, } are concentrations of spin variables with
configurations into boxes identified by certain numbers ofdifferent types of “neighborhoods.” We shall assume that in

clauses of each typ&.M,, and also by the Ising spin in a the limit of largeN the distribution of coefficients, cor-
configurationNy, responding to the same macroscopic st@®) is sharply

LMK pebaked arougg) their mean valuggth the width of the dis-
tribution «N™9).
Ma=Ml0.G)= Nz_lll Slag, s apl, (37) Under the above assumption we can immediately com-
e pute the Laplace-transformed transition probabilil) in
terms of the coefficients, . Indeed, consider flipping a spin
(38) with value o and neighborhood type given by vectarThis
will change the total spin by -2and for each clause of type
. . ] « and indexp € (1,K) the value ofNM , will decrease by
Different boxes correspond to macroscopic states defined % On the other hand, for the clause typé= a(p, @) ob-
the set of parameterdq,{M,}) with qe(~1,1) and  ineq by fiipping a bit irpth position ine, NM,, is corre-
M q=. The energy function can be expressed(@a as  gpondingly increased b, Hence the Laplace-transformed

LN
qEQ(U'):NE gj.
=1

follows [cf. (34~36)]: transition probability is
K
e(MD=y= 2 {eMm, BOAYahidIMaD) = 2 Con exp[zem 2 Vo~ Yaip.a)Ka |
m=0 AR p,a
. (39 (43
M= M8 K-2mS where the coefficients, are set to their mean values in a
mo e il macroscopic statét?).
where the form of the coefficients, depends on the prob-
lem: A. Entropy and coefficientsc,, x in a macroscopic state defined
- : by g and {M .}
S[m, 1] (Positive 1-inK SAT) . L .
m= . Here we use the annealing approximation to estimate the
1-6[m,0]- 5[mK] (PositiveK-NAE-SAT). mean values o€, and also of a macroscopic statg M,).

(40) We start by introducing the concept of annealed entropy. Let
N be the number of spin configurations subject to some con-
straints. In general, it is a function of the disorder realization.
The annealed entropy is defined as the logarithm of its dis-
order average:s,,~=In{(V). Note that for the correct,
quenched, entropy the order of taking a logarithm and disor-
der average is reversed.

Since in the random hypergraph model all disorder con-
figurations are equally probable, annealed entropy is given as
Sann=INN5g—INN;, where Ng; is the total number of spin
and disorder configurations ard; is the number of disorder
BOAYahia{Ma) = X €M alap(n{r i, {Ma}). configurations. N —_—

T ) For enumerating all possible disorder configurations we
(41) depart slightly from the traditional random hypergraph

model. In our model all clauses are order@do disorder

We assume that all binary variables are also subdivided intoonfigurations where any two clauses are permuted are
distinct groups based on their valwe=+1 and a vectok deemed differenf clauses can be repeatétie same clause
with integer coefficient&?, indicating the number of times a can appear twioe the order of variables in a clause is im-
variable appears in a clause of typen positionp. Clearly,  portant(two disorder configurations are different if the order
consistency requires thigf,=0 unlessa,=o. We now define  of variables in any clause is changeend finally, variables
a quantityc, which is equal to the fraction of spins with can be repeated in a single clause. This change does not alter
given o,k. For a spin configuratiomwr there exists a set of the underlying physics, since the probability that two identi-
coefficients{c, «} with elements of the set corresponding to cal clauses appear is infinitesimal, and a variable enters a
all possible values of andk (there will be many O's in a set clause twice in at mosD(1) clauses, which can be safely
for each spin configurationin general, there are exponen- neglected. As regards the distinction between the disorders

In the following we compute an approximation to the ef-
fective potential26), using the landscape functio(7) and
(38). According to(27) it depends on the entropy function
s(gq,{M,}) and the transition probabilityl4) between dif-
ferent macroscopic states. Recalling that variaglasd M,
are normalized by the factd{ we study the probability of
transition, p(n,{r.};q,{M,}), from the state(q,{M,}) to
the statgg+n/N,{M ,+r,/N}). The Laplace transform qf
with respect tan,{r,} has the formcf. (27)]
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with permuted clauses, this only introduces a combinatorial 00 InZ

factor which cancels out. The advantage is that each disorder Mo P

can be represented as a sequencM df-tuples of integers Ha

from 1 toN. From here we obtain the expression for the Lagrange multi-
We will first compute the annealed entropy of a macro-plier uP,

scopic state(q,{M,}) under additional constraints: we fix

=M. (49

the valuesc, , and compute the annealed entropy as a func- M_a _ 1+ agQ_ (50)
tion of q,{M,},{c,x}. Recalling thatM, are the numbers ud 2

of clauses of a given type scaled By and the total number
of clauses isyN, we obtain the number of joint spin-disorder
configurations as a product of the following factors:

Then introducing a new notation

lte
(i) the number of ways to assign types to clauses Ms = > —ZEMZ,
(N’Y)I/Ha(NMa)II pa
(i) the number of ways to assign types to variables
N!/Ha',k(NCa',k)!l _ 1+ aE
(ii) for all p, @, the number of ways to permute the ap- Mi_pza 2 Ma (51)
pearance of variables ipth position of clauses of typer: ’
(NM T (K1) NGk, we obtain
Consequently, the annealed entropy is given by
Z=eeiteher, = (52
C T g

Sand (€10 M=~ 2 In[cg,kH <k?,!>]
ok P Then the entropy can be rewritten in the following form:
+(K=1)2 My In M+ yIn y- K. 1+q 1-q
a Sand M ==-Ng+ M In—+ M_In——+InZ
2 2
(44)
=D MyIn M+ ylny=9K. (53
In the largeN limit we replacec, y by their annealed aver- @
ages, i.e., the values that maximize the annealed entropy. In
its simplest form, we place no constraints opy, except V& NOW use
consistency requirementd?2). Associating Lagrange multi- 1+q 1-q
pliers A and Inu?, with these constraints, the expression for ge=2——, elet-=Z2—— (54
the entropy can be rewritten as 2 2

and obtain the expression for the second Lagrange multiplier

. Ma’ )\!
Sand G {M o}]=miny = \q+ 2 M, In— +In ZI\, {ub)]
A, P Mo 1+g, 1+q 1-gq, 1-q
-\NQ=- In - In -InZ+ K.
-S> M, InM,+ yIn y—9K. (45) 2 2 2 2
@ (55
The values of,, , are given by Upon substitution ok from the above into the expression for
' Sann (53) we finally obtain the annealed entropy
1 p R
= —e ][ (ub) ey, 46 _ 1-¢° 1+
Tz E(M“) : 49 snlaiMI=-qtanitg-In 2 T4 Men 2q
L 1-
andZ is given by + M. In 2q_EMalnMa+7|n y.
7= exp(k +3 % slay, 1];&1) (56)
Also the coefficientsc,,, are given by(46) and (47) with
- _ p o,k
* exp( At %% Sl e, 1]'%)' (47) Lagrange multipliers given i50) and (55).
The values of the Lagrange multipliexs u?, are related to B. Effective potential
9,iM,} via Consider a factof (x)=(df/dI'), (26) and(27) in the ex-
pression(26) for effective potential withx=(q,{M,}). It
dlnZ =q (48) follows from (27) that to find this factor we need to evaluate

AN the Laplace-transformed probabilig¢l) and (43) at

036702-7



SMELYANSKIY, KNYSH, AND MORRIS

0= 50Sand 8, Yo = 50Sand IM 4. (57)

PHYSICAL REVIEW E70, 036702(2004

We note that the effective potentialf(q,{M,})
=e({M D) -T€(q,{M,}) is symmetric with respect to per-

This is where the Lagrange multipliers come in handy as Wep,tation of individual components iM,} corresponding

can immediately claim that

9Sand 4= =\, (58)

Ma
Fand IM e = 2 I —F = In M, (59
p

o

Note that in differentiating with respect t81, above we

to different orders of —1's and +1's in the vectorial indax
We look for the minimum of(q,{M,}) using the symmetric

ansatz
K -1
Ma= <m> M

wherem is the number of —-1's inw. Substituting(67) into

K
mzzl‘_“e'

> (67)
p=1

omitted the constant term. This is permissible since only dif{66) and rewriting

ferencesi0ny IM o= dand/ IM o appear in Eq(43). A fur-
ther refinement is to write

M, 1+ 1-¢°
2In—r=2>n 79 _ g jp 129
= e S 2 2

+> oy taniitq.
p

(60)
Using this in the Eqs(27) and(43), we obtain

(@M =331

ok pa

kP
’ _ M\«
X (Mﬂellzzp’("p’_"p’)ta”h ta Ma ) KR

[23

(61)

Since 1/Zpr(0'pr—0'r;,)50'p (where @’ is obtained froma
by flipping pth bit) and also

—_—

/ 2

1 - _
Maj,uza: \ 5 q e% tanhi’ ! q’ (62)
the expression is considerably simplified
2 2 —_—
€(q1{Ma}) = E ex J/—c42 2 \”MaMa’> ’ (63)
T (e

where the sum is over paite, ') that differ in exactly one
position

1 K
~2 laj-aj|=1. (64)
24 |
p=1
To evaluateZ we write
=2 o= —2 ex M++M-)
= v +, - = 7
V1-¢ Vi-¢ \1+gq 1-q
(65)

and the expression fdt becomes

2 e MaMa M,

[—

€(g,{M}) =1 -0 ex

_&)
1-q/°

Here M. are given in(51).

(66)

— — 25K L m+ 1) (K - mM M
e(q,{Mn&):\l—qzexp< S0\ (0 F)(_qzm) e

K —
_ Ky+g3k oK 2m)Mm> 68)

1-¢?

where we defined¢(q,{M}) =€(q,{M,}). The effective
potential is then

QM) = (M) ~TE(@, M) (QA), (69

with energy given in(39). In the case of the SA algorithm the
corresponding free-energy function@B) is

(M) = (M) - TSQ,{MD)  (SA),

where the entropy function equals

(70)

/

— 02 K
gq,{Mm}):—qtanh‘lqﬂyK—1)|n\‘12q _(E (K
m=0

« M
- 2m)Mm)tanh‘1q— > Mpln —=.

=)

If we were to use an even smaller set of macroscopic
parametersge.g., only the energy) we can still employ for-
mula (68) with the proviso that unspecified variables should
be taken to equal their most likely values, i.e., those that
maximize the entropys(q,{M,}) not the landscape

(71)

?(q,{/\/l_m});For example, in the case of energy-only land-

scapes{=¢{(g), the valuesy,{M} that maximizes(q,{M})
for a given energy e and number of hyperedges
yN(EﬁzoMmE ) shoug be computed and then substituted

into the expression fof (68).

We compute, within the annealing approximation, the
point of static transitiony, (cf. Fig. 1), where the entropy of
the macroscopic state with zero energy vanistsé8)=0,
and the dynamic transitiony; for connectivitiesy> y4 an
effective potentia(69) exhibits a global bifurcation for some
I'=T'.. The resulting values are given in Tablgdee also
Figs. 2 and R Note that in 1-in-3 SAT ané&K-NAE-SAT for
(K=3, 4, 5 we find no dynamical phase transition before the
satisfiability thresholdcf. Fig. 1).

In Fig. 4 we plot time variations of the landscape param-
eters M,,=M., corresponding to the global minimum of the
effective potential. In Fig. 5 we plot a time-variation of the
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TABLE I. Annealing bounds for dynami€yy) and staticy,) transition for positive 1-irk SAT and
positiveK-NAE SAT for different values of the number of variables in a clakis&lo value(—) indicates the
absence of dynamical transition.

K 3 4 5 6 7 8 9 10
1-in-K Vd — 0.650 0.557 0.475 0.416 0.371 0.335 0.305

Ve 0.805 0.676 0.609 0.548 0.500 0.461 0.428 0.400
K-NAE Vd — — — 19.8 34.9 61.7 109 196

Ve 241 5.19 10.7 21.8 44.0 88.4 177 355

scaled ground-state energygiven by the value of the effec-
tive potential at its minimum. Singular behavior correspond- #m=
ing to the first-order quantum phase transition at certain

N
r

=rn('=I'x) can be clearly seen from the figures. Plots in

Figs. 4 and 5 correspond to precisely the static transiion
=y, for the case ofK=4 in 1-inK SAT problem. In the
region yy< y< vy, there are an exponenti@h N) number of
solutions to the satisfiability problem but the runtime of the

quantum adiabatic algorithm to find any of them also scale

exponentially withN. This is ahard region for this algo-
rithm. We note that in the limit oK — o the annealing ap-
proximation becomes exact. Together with the fact that for

large K y4 and y. seem to be distinctly different provides
evidence that this resu(the existence of a hard region for
quantum adiabatic algorithnis robust.

VI. UNIVERSALITY PROPERTY FOR TRANSITION
PROBABILITIES

responding to thénormalized total Ising sping and num-
bers of clauses of different typd#l,,} (39) (the type of a

4 K

> vl )

p,m’ =0

-1
( ) > s[d(e’ - 0),rIMy(e,7), m=0,...K,

(72)

can be easily computed by counting the number of ways one
can flipr bits in configurationo’ to transform a-bit clause
of m’ type (i.e., with m’ unit bits) into a clause of thenth

o

N-K )
X
r-2p-m+m'

K-m' )
_m’+p

(73

[here we use the conventiéﬁ) =0 form<0 andm>n]. In
the double sum above, values b, are multiplied by the
number of possible ways to flip three groups of bpsunit
Here we study the universal features of the transitionyjts in a clause ofi’-type, p+m-m’ zero bits of this clause,
probability in (11) for the set of macroscopic variables cor- and r—2p—m+m’ bits of the configurations’ that do not

belong to the clause. Similarly, one can show that the first
moment corresponding to the varialgjequalsg’(1-2r/N).

clause is equal to the number of unit bits involved in the|t is clear that dependence of the first moments on the ances-
clausg. For simplicity, we shall focus in this section on the g, configurationo”’ is only via the variables’, M/, for that

caseK=3 only.

To clarify the above choice of macroscopic variables we

configuration.
In the limit, r > 1, the above conditional distribution has a

consider an auxiliary quantity: a conditional probability dis- Gaussian form with respect @ and M, Elements of the

tribution of the macroscopic variablég,{M}) over the set
of all possible configurationer obtained by flipping bits of
the configurations’. The first moments of this distribution

corresponding tiM,,,,

0.8 @
0.7 s
0.6
o
0.5 °
°
I L
0.4 o .
©
0.3 ©
3 4 7 8 9 10

FIG. 2. Staticy, (circles and dynamicyy (diamonds$ transition

for positive 1-inK SAT for various values oK.

10°

10

10+

10

covariance matri%m;q/(a’):O(r), and correspondingly, the
characteristic width of the distribution ®(r*/?). For a con-
figuration ¢’ randomly sampled in the botq,{M.}) the

<ce

4 5 6 7 8

[ ]
e O
Iy
9 10

FIG. 3. Staticy, (circles and dynamicyy (diamond$ transition

for positive K-NAE SAT for various values oK.
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1 ¥ " : VIl. RANDOM GRAPH ENSEMBLES WITH REDUCED
FLUCTUATIONS
0.8r ] One can easily point to a major deficiency of the anneal-
ing approximation—the fact that it fails to correctly predict
0.6 1 ] the satisfiability transition. While part of this can be attrib-

uted to the fact that real entropy is slightly different from

what is predicted by the annealing approximation, the major
0.4r ] source of error is the incorrect assumption that the entropy
vanishes at the satisfiability transition. That the entropy does

Z
E
=

0 272 ] not vanish can be easily seen by examining the structure of
=)0 the random graph. At any finite connectiviigbove percola-
3 tion) it consists of one giant component and a lafEN)
o- e ber of smallO(1) ts. Each small t
0.65 07 0.75 0.8 number of smallO(1) components. Each small componen
T makes anO(1) contribution to the entropy for a tot&(N)

contribution, hence the entropy is in fact positive at all con-

FIG. 4. Plots of the landscape parametetg=M., at the glo-  pectivities, including the satisfiability threshold.
bal minimum of the effective potential vs for K=4 and y=1,

(1-in-K SAT problem). Curves labeled 0-4 correspond Kb/ y
throughM.y/ . A. Concept of a core

o . ] An improvement over the annealing bound for the satis-
r.m.s. deviation of the elements B, (o) from their mean  fapijity threshold is possible. Note that clauses outside of the
values in the box i©O(N"?). It is clear that in the limitr  giant component do not affect satisfiability and hence can be
>NU2 the covariance matrix elements can be replaced byisregarded. Similarly, one can identifyrelevant clauses
their mean values for the macroscopic st@atfM}). There-  and remove them. Irrelevant clauses are those that can be
fore in this limit the conditional distribution afterspin flips  eliminated without changing the satisfiability of the entire
starting from some macroscopic state depends only on theroblem. We shall illustrate the identification of irrelevant
values of(q,{Mp}) in this state(universality property clauses based on local properties for positk#NAE SAT

One can show that far<N¥?2 the conditional distribution  and positive 1-inK SAT.
afterr spin flips can be expressed via the distribut{dd)

with r=1, using a standard convolution rule. Implicit in our 1. Positive K-NAE SAT
derivation of landscapes is the relation betweerl land- . : .
scapes and a set of quantitiés, }. Universality of land- For K-NAE SAT we can identify variables that do not

scapes should be interpreted as the fact fbag} are self- enter any clause and remove them without affecting the sat-

averaging. Had we included only the energy instead of a fulisfiability of the formula. Any variable that appearsdractly

set of parameters, we would not have expected to see sudye clause can also be eliminated together with that clause,
' since the value of that variable can be adjusted to satisfy that

self-averaging in the so-called replica-symmetry-broken i
ause. As one removes such a clause, other variables may

phase. It is possible that inclusion of the full set of landscap ! didates f L O " lqorith
parameters assures universality. We performed a series come candidates for removal. Dne can write an aigorithm
at iteratively removes variables that appear in zero or ex-

numerical studies to test this hypothesis. In Fig. 6 we prese - . . ;
yp g P ctly one clause until no such variables rem@ee Fig. 7.

the results of numerical simulations and the comparison wit . . X i
n fact using such an algorithm improves the running time of

analytic results within the annealing approximation. One ca lassical algorith Th t of this additional
see that the property of self-averaging holds and that evefyassical aigorithms. The cost of this additional préprocess-
Ing is negligible: by using special data structures this algo-

the annealing approximation provides a very good descrlprithm can be made to run iB(N In N) time.

tion. . . . .
It is not surprising that the result of running suclrian-
ming algorithm is a set of clauses and variables with a con-
dition that every variable appears in at least two clauses.
However, the statistical properties of the remainauge are
not immediately apparent. As a first step, observe that the
resulting core is independent of the order in which clauses
and variables were removed. Hence we can study one spe-
cific algorithm.
First, we eliminate all variables of degreétBat appear in
no clausep In the initial problem all instances witN vari-
ables andM clauses were equally probable. The number of
0.65 0.7 0.75 0.8 vertices of degree O\, does fluctuate, but fogvery specific
T . . .
value of Ny all instances withN-N, variables, andM
FIG. 5. Scaled energy of adiabatic ground stggevs = for K clauses, and the additional property that each variable ap-
=4 andy=1y, (1-in-K SAT problem. pears in at least one clause, are equiprobable. This property
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(b) N=10% (c) N=10°
: 12 :

(a) N=10°
: 1.2

1.2

(d) N=10° (e) N=107 (fy N=10"

12 : 1.2 : 0.95 :
11} 114}

1 1

0.925}

09} 1 o9}
08} ! os}
0.7 : 0.7 : 0.9 -

0 0.5 1 0 0.5 1 0.9 0.925 0.95

FIG. 6. (Color) Results of numerical simulations and their comparison with theory. Depicted are Laplace transfovisfarf 1-in-3
SAT. Numerical results: curves that have different colors correspond to different random problem instances; curves of same color correspond
to different random bit strings. The dashed black line is a theoretical result based on the annealing approximation. The{iesdepict
instances with 1§ 10%, 10°, 1P, and 10 binary variables. Since the error is not visible we replotfjra magnified section of insét). The
bit strings were sampled wiitj=0.422,M7=0.048,M,=0.416,M,=0.123,M3=0.013, corresponding td/N=0.6. These values correspond
to the energyE../2 and they are shifted by 10% from the most likely valueg dM,,} for this energy(this shift is>N2). We also note that
for 1-in-3 SAT numerical simulations give the static phase transitiop. &0.63.

is referred to asiniform randomnes#\s a next step, identify variable chosen for deletion was chosen at rangamong
variables of degree {lappearing in exactly one claysél- all degree 1 variablgsone can show that although the values
though their numbeN, also fluctuates, for any fixed;, N of N’ and N; cannot be predicted, for every fixed set of
andM all instances withN variables of whichN; variables {N’,N;,M'} all instances are equiprobable.

have degree 1 anMl clauses are equiprobable. At the end of the algorithniN; =0, hence for fixed\’,

At each subsequent step of the algorithm we chaatse M’, all instances witiN’ variables M’ clauses and the con-
random a variable of degree 1 amorly, candidates, and dition that each variable appear in at least two clauses are
delete it together with the clause in which it appears. If theequiprobable. Since average changel,ifN; andM at each
degree of any other variable in that clause becomes 0, it istep wereD(1) and corresponding deviations were a3d),
also deleted. Some variables which had degree 2 previousBfter O(N) steps needed for completion of the algorithm,
may become degree 1 variables. Obviously=M -1, but  fluctuations in resulting\’ and M’ are only O(VN) by the
the values ofN’ and N; cannot be predicted. But since the central limit theorem and can be neglected in our analysis.
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e

FIG. 8. Example of trimming algorithm for 1-in-4 SAT. Vari-
ables are represented graphically as vertices and 4-, 3-, and
2-clauses are represented as rhombi, triangles and edges corre-
spondingly. Incomplete polygons represent connections to the re-
mainder of the graph. The figure depicts evolution of part of the
graph under the trimming algorithm.

p=1-e" - Kygte ™ = g - Kyg M1 - q)
(75)

is equal to the average value Nf/N, and the average con-

FIG. 7. Example of trimming algorithm for 3-NAE SAT. Vari- L . A
ables are represented graphically as vertices and clauses are rep ctivity of the new verte>(ulnd97r the condition that it is in
enables one to computd’/N’:

sented as triangles. Incomplete triangles represent connections
the remainder of the graptnot shown. Shaded clauses are re-
moved by the trimming algorithm. M’/N’ =

1 Ky i1-e* ™) g
K1-(1+Kyg<hetod™  p

(76)

There are several methods to derive the average reSUIt'%etter expressed M,/NzllKquK_l(l_e_quK—l)E <.

values ofN’, M’. The most straightforward is to study the We must mention that the core f6NAE SAT is in fact

evolution ofN, N, andM by solving differential equations identical to that forK-XOR SAT. The latter has been ana-
for their average values. This is somewhat tedious and Ieslszed by a different methof27] '
general. We instead resort to a different method of self-Y y '
consistency equations. For every instance one can identify a 2. Positive 1-in-K SAT
setC of variables that form aore i.e., those that will not be
deleted by the trimming algorithm. We now extend that set tc{iv
C’ using the following rules:

(1) If a variable belongs t@, it also belongs t@’.

(2) If K=1 variables in some clause belongdf then
the remaining variable must also belongtto

The minimal seC’ is obtained fronT by iteratively add-
ing variables according to these rules. Let the number o
variables in se€’ be equal tagN with gq<1. Fluctuations in
g areO(1/yN) and, consequently, are neglected.

Now introduce thé€N+ 1)st variable and compare systems
with N variables andN+1 variables. Together witiN
+1)st variable introduceAM clauses each involving that
variable andK-1) random variables. The numbAM is a
Poisson random variable with paramekey. We can com-
pute the probability that the new variable belong€ tof the
enlarged instance. The new variable belong€'taf for at

The situation is slightly more interesting in case of posi-
e 1-inK SAT. Setting a variable that appears in only one
clause does not guarantee that the clause will be satisfied,
hence the clause cannot be eliminated. Although it cannot be
eliminated, it can still be simplified by eliminating the vari-
able. The remaining instance will contain not oilyclauses
Put also one(K-1)-clause. The allowed combinations of
variables forfK - 1)-clauses should be those that have sum of
variables equal teither0 or 1. In that case the value of the
deleted variable can always be adjusted so that the sum of
variables inK-clause is exactly 1.

Similarly, at some pointK-1)-clauses can be converted
to (K—-2)-clauses(K - 3)-clauses, down to 2-clauses. In each
case the allowed combinations shall have sum of spins either
0 or 1. Finally, if one can identify a variable that appears in
2-clauses exclusively, this variable can be eliminated to-
gether with corresponding 2-clauses, since setting it to 0

least one glf theA\M clagégs,K—hl varlable_s othgr_ thanhthe shall satisfy all these clauses. As an illustration, see Fig. 8
new variables are not ig’ at the same time. Since these i, depictsk=4.

clauses are connected to random vertices, that probability Once again, one can write a trimming algorithm that
can be expressed vipalone and, owing to the fact tham eliminates such variables and clauses. As before, one can

is Poisson, equals 1-ekKyq ™). Self-consistency re-  gp,q\ that all remaining instances must have the property that
quires that this probability be equal tp each variable appear in at least two clauses of any length and
1 —q:e‘K“/qK_l (74) at least one clause of Igngth greater than two; and that for
' fixed number of verticesN’, number of 2-clauses
For practical purposes we must seek the largest solution tbl5, ... ,(K-1)-clausesMy_,;, K-clausesMy, all such in-
this equation. stances are equiprobable.
Note that the new variable belongs to the c¢set() if Without going into detailgavailable in our upcoming pa-
not for one, but forat least twoof AM clausesK-1 vari-  per[28]), we should mention that the equations now involve
ables other than the new one are&in The probability of that  two variablesq andq’, owing to the separate treatment af-

036702-12



QUANTUM ADIABATIC OPTIMIZATION AND ...

forded to 2-clauses and clauses of length greater than 2. The

self-consistency equations are

1-q == =K-Dat -9 (77)

1-q=(1-q)eKK-Dn'@-a? (79)

with implicit understanding that the largest solutiopsq’
are sought.
The expected values of’ as well asM,, are given by

N'/N=q -K{1-(1-9**-(K-1ql -9~ 2|1 -q),

(79
Mé/N=(;>m’2(1—q)K‘2. (80)
M{(/N=<t)qu(1—q)"'k for k= 3. (81)

Note that results for the core for positieNAE SAT and
positive 1-inK SAT allow for a compact formulation
through introduction of thegenerating functionof the al-
lowed variable degrees.

For the case oK-NAE SAT it is G(u)=2g=,ud/d!=e

PHYSICAL REVIEW E 70, 036702(2004

B. Improved annealing bound

Once irrelevant clauses have been removed we expect the
entropy at the satisfiability transition to be much closer to
zero. We have already made predictions for the number of
remaining variables and clauses after application of the trim-
ming algorithm starting from a random graph of connectivity
v. We can compute the entropy of the remaining core. Using
the critical connectivity at which the annealed entropy of the
core alone becomes 0 as an estimate of the satisfiability tran-
sition is an improvement over the traditional annealing ap-
proximation. We are motivated by two contributing factors:
(i) the rigorous mathematical proof that the disorder is rel-
evant for the satisfiability transition relies on the presence of
irrelevant clauses, hence their removal can sometimes make
disorder irrelevant, andi) applied toK-XOR SAT, this im-
proved bound becomesxact[27].

Doing the annealing approximation on a core is hampered
by the fact that clauses can no longer be assumed uncorre-
lated. However, the technique we introduced in this paper is
well-suited for this example. The annealed entropy equals

1 1
Sann:W In NSG_W In Ng, (90)

where N; counts the number of possible disorders avig;

—1-u, since degrees of all variables are at least 2. In termss the total number of allowed spin-disorder configurations.

of this G(u), equations can be written as

N'/N = e“G(p), (82)
1
M/IN= " ue™ G () (83)
with u=KygK~1, and the equation oq is
q=€e*G'(n). (84)

For the case of 1-itk SAT, G is a function of(K-1) vari-

ables reflecting the fact that the degree of each vertex is &
.,dx) whered, counts the number of appear-
ances of said variable ik-clauses. The generating function

vector (d,, ..
for the remaining core is
K
K
Glua ua, - k) = exp(zizz ,ui) —e"2— 2 1. (85)
i=3

There appears a set{q,,...,0x} such that gy
=(! du)G({w;}). Obviously,g;=qg,=---=0qx. Setting

K ’ K-2

H2=2\ , |y (1 -0, (86)
K

= k( ) )qu‘l(l —-q)X* for k=3, (87)

N’ and M, can be compactly written as
N'IN = ex~ 2, i) G, (89)

, 1 K J

MUN= L mexs(= 2 ) -Gl (89

We now separately consid&-NAE SAT and 1-inK SAT.

1. Positive K-NAE SAT

Consider the number of possible disorder realizations
with N’ variables,M’ clauses, with the constraint that each
variable appear in at least two clauses. Each variable can be
characterized by the vect&rwith K components, each com-
ponentk, counting the number of clauses where said variable
appears in theth position. Treating disorders that differ by
permuting different clauses or permuting variables within a
lause as different and fixing the fractions of vertices with a
particular realization ok to c,, the normalized logarithm of
the count of possible disorders is

1
N In Nsg=so[N',M";{cJ]=-> ¢ In[ckH kp!]
k p

M !
+K—InM". (91
N
We must maximize this expression with respectitsubject
to the constraints
> Ky =M'IN’ (92)
k
and thatc, =0 for =k, < 2.
Introducing Lagrange multipliera,, the expression for,
becomes
I S
G(Spup) b Kp!

Echoing the constraint thatyk,= 2, the normalization factor
is G(Zpup) Where G(x)=€"-1-x—the familiar generating

Cy (9 3)
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function of the core. Using the dual transformation we can _ 4 M.
rewrite the entropy as si{M_}]=min) M, In + M In M_ +In[G(w.)
Mt + —
M'/N’ MM , ,
SN, M']=min{ 3 (M'/N")In +In G(E Mp) +G(u-)]}+WInW—EMa|n M,
o L p Mp p a
KM’ '
— InN’ +——InN’ 99
+o NN (94) NG (99)

Comparing this expression with Eq®82) and (83) we ob- with /’\/lL:Ea(Epﬁ[ap;l])M; and MI=2,(Zpd[ayp;
serve that the minimum is achieved fou,=(1/K)p ~1DMa o _
=4g<"1, v being the connectivity of untrimmed random The correct annealed entropy is given by the difference of

graph. these expressions
Now we proceed to count all possible combinations of , S e e
spin assignments and disorder realizatigfig;. Correspond- Sand N, M {M 3 = 51 [N', M7 {M 1] = s N', M7].
ing entropy is in general a function ¢V} where M., is (100

the number of clauses with variables having values described
by a vector{a,} = a, divided byN’ so that>,M =M'/N’.  This enables us to find the improved bound on the satisfiabil-
In complete analogy with results of Sec. V A we obtain ity threshold(whereH,,,=0) or to compute the most likely
values of{ M} for a particular energg.
TN M-S AL __ Note that for positiveK-NAE SAT corrections to the
SN, MM b {Co ] = % Cok In[c"*kg kﬂ!] static threshold due to this improved approximation are
' minute, since the transition happens at large connectivities,

+(K=-1)> MLIn M., where the simple annealing approximation adequately de-
@ scribes the transition.
+M—IInM—I+K—MInN’ 2. Positive 1-in-K SAT
N’ N’ N’ . . Positive 1-in-
(95) For 1-inK SAT the derivation is quite similar. An impor-

tant addition is that the clauses can have any length from 2 to
K, hence indexX should reflect that fact. Since the calcula-

Optimizing this with respect te, subject to familiar con- tions are similar in spirit, we shall only provide the results

straints
M, kM, /N’
Pr = ’[N’,{M’}]:min{k—,k In —&— +1n G({,uk})}
2 Ko = Ma (96) Sl M = mim koG
SRME
and the constraint that, =0 if =, k!, <2, the expression +§2W n N, (10D
can be equivalently rewritten as -
with G({xu}) = exp(Sfe ) — 4~ o, and
M
SIIN', MM = mind X M, In =2+ In Z[{u0}] < , ,
w2, Lpa o '~ mi Do Mie g M
a s =min) X | My, In + M, _In
’ M’ Mt | k=2 Y Mk,+ Y Mk, -
+WInW—EM;InM; K
) ‘ NG ) + Gl ] [+ [Mﬁ In M
’ k=2
+——InN’, (97)
N’ K oM/
’ ’ kMk
- M, In Mk,a] 3TN (102
« k=2

with Z[{xP}] given instead by

and the complete expression for the annealed entropy is
Z0{ub}1= G(E fiap;nuz) + G(E 5l ap;- mz)-
pa pa Sand N' AMt My o} = SIHEM 3 = N’ M.

(98) (103)

Labeling arguments by, and u_, respectively, allows us to The numerical predictions for the point where the entropy
simplify this to becomes zero are provided in Table II.
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TABLE Il. Dynamic and static transition for positive 1-K-SAT with the improved annealing approxi-
mation and with the old method usiflyl,,} as landscape parameters. The predictiop.dbr K=3 compares
favorably with the result of simulations of,=0.63. No value(—) indicates the absence of a dynamical

transition.
K 3 4 5 6 7 8 9 10

Improved 74 — — 0.535 0.469 0.421 0.379 0.344 0.317
Ve 0.653 0.609 0.553 0.507 0.468 0.435 0.407 0.382

Old Vd — 0.671 0.552 0.471 0.413 0.368 0.333 0.304
Ve 0.805 0.676 0.609 0.548 0.500 0.461 0.428 0.400

VIIl. QAA ALOGORITHM ON A CORE: spin variable, this expression is valid wi@(u«) redefined to
EXTENDED LANDSCAPES be G(u)=e*.

Once we have reexpressed the entropy on a reduced
graph, it is only natural to implement the quantum adiabatic B. Positive 1-inK SAT
evolution directly on the reduced graph. Correspondingly, we
shall need to recompute the landscapes for the reduceéi
graph.

The notion of landscape parameters has to be generalized,
nce clauses of any length can appear. Correspondingly, we

choose a sefMy ,} to serve as landscape parameters. In
A. Positive K-NAE SAT contrast toK-NAE SAT, we have a total oE[_,(k+1)=(K

This case entails the least difficulty, since we can use the D(K=2)/2 parameterqwith symmetries of My, taken

same landscape parameté¢sst,}, the difference being the nto accoun

exclusion of the total spin from the list of parameters. The The derivation of landscapes can be generalized to in-
; ; ,p o par: L clude several types of clauses. The final answer is itself a
central quantity—¢'({M})—is still expressed in a similar

form: generalization of Eq(66)

! ’ ! ! — 2
CEMD =2 e exp[ 72 kﬂ( - as—)] o M G + Gl

ak Zp,a (9./\/1; (yMa(p,a)
(104 <G ,/M 2 /Ml,(a‘/\/lll(a/ )
Mk,+Mk, ' '

Notably, the sum ovek is now restricted tok|=2. The e’y

derivatives of the entropy are still (109
s ' / As beforeG({u}) =exp =i ui) -e2-=K ;.
(Ma/ln? =2 M_pa —In Ma,. (109 We can exploit the symmetry of4; , to write
a p o
k-1
For a, o' differing in exactly one position, we shall have D /Mﬁo/‘/lﬁ =3 \/(m+ 1)(k—mM, M, ot
s o' g ,m+1°
, , p (a,a’) m=0
1) Sn  9Samn 1 My
| —-—|==In—. 106
2<(?M; oM., ) 2 ubh (108 (110

) The same is possible fa¢-NAE SAT; in fact it is precisely
Next, usingc, ,=(1/Z)(uR)*«/kP}, for |k|=2 and Eq.(43),  this form that is used in numerical calculations.
we are able to write, in terms of generating funct®fy):

2
O M = EG( > \/Mzuz,>. (107

(@)

C. Numerical results

Here we provide the numerical results for the satisfiability
transition as determined by maximizing the entropy for en-

SubstitutingM [,/ uP =M., I u, , we can rewrite this as ergy E=0 and solvings},=0. And we also list the location
PP of the dynamical transition, indicated by the global bifurca-
UMY = 2 tion in f'=¢"—T"¢’. All results are expressed in terms of the
7 Gluy) +G(u) connectivity of the original random graph for easy compari-
son with Table I.
xG| A S Imim ). We observed that this refinement of our analysis leayes
MM oy and y, of K-NAE SAT essentially unchanged. This is the

(108) manifestation of the fact that if eith& or v is large, then the
core is not much different from the original gragte., that
Note that for the landscapes on the original graph without the|=1). In contrast, the difference for 1-ik- SAT is quite
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FIG. 10. Relative difference between the predictions for the dy-
namical phase transition point in the case of fulj) and energy-
only (ﬁ) landscapes vs df for 1-in-K SAT (circles and K-NAE
SAT (squares
noticable. For consistency, we compare the location of the ) )
dynamic phase transition computed on the core to that consimplified energy-only landscapgsee Fig. 1 For 1-inK

puted on the original graph using orliy,, as landscape pa- SAT one can clearly see that the relative correction quickly
rametersomitting total spin, as it is not among the param- diminishes. We believe that same happenddodAE SAT if

eters for computations performed on a goke also include sufficiently largeK’s are considered. If this indeed holds, it '
new. better bounds on the static transition. All results arS€rves as a corroboration that our results are correct numeri-

summarized in Table Il and Fig. 9. cally for largeK. It should be noted that the lardedimit
corresponds to the so-called random energy model, where
one does not expect to perform better th@@") via any
IX. CONCLUSION quantum algorithm.
The idea of using energy-only landscapes was present in

We have formulated an ansatz of landscapes and studiggdo] as well ag31] and[32]. A jump in the time-dependence
the Complexity of the quantum adiabatic algorithm within theof the expected energy value was seen in numerical simula-
annealing approximation and found the existence of a dytions[7], indicative of a first-order phase transition, though a
namic transition and a har@xponential region above that different ensemble was consideréshly instances having a
dynamic transition. However, a similar analysis of simulatedynique solution were considened
annealing did not reveal any phase transitions. We explain e also attempted to go beyond a simple annealing ap-
this as follows. The annealing approximation should fail forproximation and studied the dynamical transition using its
sufficiently small energies. It is commonly known that simu- refinement. For that we developed a polynomial mapping of
lated annealing can find suboptimal solutions with very smalthe optimization problem defined on a full graph onto the
energies very efficiently, but it takes an exponentially longproblem defined on its subgragla core where disorder-
time to actually reach the ground state. The annealing apelated fluctuations are significantly reduced and the anneal-
proximation does not correctly describe very small energiesng approximation is expected to perform much better. As a
and cannot be used to establish its Complexity. Note that Weest we used the annea”ng approximation on a core to calcu-
can reconcile this with the fact that the annealing approxi{ate the positiony, of a static(satisfiability) transition where
mation becomesxactin the limit when the number of bits in - the entropy of the state witE=0 vanishes. We also com-

a clauseK — co: if the annealing approximation fails for some puted . humerically and found it to be very close to the
E<Ex we expect thatEx is decreasing to zero as in-  analytical result. We then studied the dynamics of the quan-
creases. However for any finit¢, the free energy computed tym adiabatic evolution algorithm on a core using an ex-
within the annealing approximation is free from any singu-tended set of landscape functions and found that the old re-
larities indicative of a phase transition. To study the com-syits obtained on a full graph are reproduced qualitatively.
plexity of simulated annealing one needs to use the tools ofhis supports our earlier prediction that the location of the
spin glass theory, in particular, the replica trifk5,26,29  phase transition is not very sensitive to the exact nature of
(see also beloy annealing approximation employed.

In contrast, in our analysis of the quantum adiabatic algo- We emphasize that the different versions of the annealing
rithm, we observed a first-order phase transition, and, imporapproximation employed in this paper describe the phase
tantly, it happens for energies. =O(E..) [whereE.. is the  transition as a global bifurcation between two macroscopic
expected energy at infinite temperatuie,=(1/2"3,E,].  stateg(pure statesin the space of macroscopic variables de-
Moreover, the energies on both sides of the transition, relafined by a set of landscape functions. The complexity is due
tive to E,. seem not to change appreciably with increas{ng to tunneling between the pure states. In contrast, spin glass
Since the annealing approximation for this range of energietheory predicts the existence of an infinite number of pure
can be used, the prediction for the dynamic transition shouldtates[29] at sufficiently small energies. On the other hand,
survive, though the exact numerical values may acquire cofas we mentioned above, the first-order quantum phase tran-
rections. We have recomputed the dynamic transition withsition occurs for large energigs. and this has been con-

FIG. 9. Static(circles and dynamic(diamond$ transition for
various values oK for positive 1-inK SAT.
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firmed with an improved annealing approximation. K-colorable if and only if the boolean formula is satisfiable,
Although the transition is seemingly absent for sniglla and vice versa. It follows that if a polynomial algorithm is
better approactias compared to the annealing approxima-invented to solve somiP-complete problem, it can be used
tion) may reveal it. Moreover, we believe that if this happensto solve allNP-complete problems.
the order of the transition will remain unchanged, suggesting A central NP-complete problem is satisfiability. An in-
that the disorder may be irrelevant for the determination oftance of satisfiability is a set of clauses, where each clause is
the order of the phase transition and, consequently, for tha “logical or” (0) of literals, each literal being either some
complexity of the quantum adiabatic algorithm. That is, thevariablex or its negation—x. For any problem whose solu-
exponential complexity is not due to the true combinatorialtion can be verified in polynomial time, one can construct an
complexity of the underlying random optimization problem equivalent boolean formula. It is obvious for the problems at
but rather due to peculiarities of the driver term and a parhand. The challenge now is to show that any boolean for-
ticular ensemble of random instances considered. mula can be cast as some instance of either Positive 1-in-
A future extension of the present work is to include aK-Sat or PositiveK-NAE-SAT. It suffices to show that we
sufficiently large(possibly infinitg number of landscape pa- need only encode basic boolean operations, e=g=(xy).
rameters, thereby making the annealing approximation inwe can trivially implement—x=—(x0x) and z=x0Oy is
creasingly precise. In this regard we recall that the 1-bit-flipimplemented as-(—x[—y). Therefore, a clause of arbitrary
conditional distribution over landscape parameters employeféngth (x,0---0Ox) can be represented as followg;
in this paper(43) can be expressed via the set of coefficients x, (x,), z,=(z, Ox3), up t0z=(zc_,0x¢). Herez is true if
{c,t that are concentrations of binary variables in a givengng only if the clause is satisfied. By usirg(xOy)
string with different types.{c.r,k) of an immediate neighbor.- =—(~(x[ly)) in a similar fashion we implement “logical and”
hood. In fact, these coefficients themselves can be used in i) of 4| clauses. In the following we demonstrate how to
exten_ded set of_Iandscape parameterthen an appropriate  on.ode the basic building blocks.
effective potentialf(x,I") can be introduced and its bifurca-
tion can be studied wheh' varies frome to 0. Further- 1. Positive 1-inK-SAT
more, one can consider introducing progressively larger sets -
of landscape functions by defining neighborhoods of pro- A clause of type(x, ... x,y) necessarily impliex=0 and
gressively larger size and using the well-known property thay=1; hence we can represent constants 0 and 1. A clause of
local structure of a randorghypengraph is tree-likg33]. type (0, ...,0x,y) implies x==y. Finally, a clause of type
(0,...,0x,y,2) is equivalent to a 3-clausg,y,z) so that
we can restrict ourselves =3 without losing generality.
For K=3, immediately observe that three clauses
This work was supported in part by the National Security(x,z,u’)(y,z,u”)(u,u’,u”) with free variablesu, u’, u” im-
Agency (NSA) and Advanced Research and Developmentply z=—(x0y). This basic building block is in fact sufficient
Activity (ARDA) under Army Research Offic@RO) Con-  to build any boolean formula, as a result, any boolean for-
tract No. ARDA-QC-P004-J132-Y03/LPS-FY2003. We alsomula can be cast as a 1#-SAT formula.
want to acknowledge the partial support of NASA CICT/IS
program. We would also like to acknowledge helpful com- 2. Positive K-NAE-SAT
ments by E. Farhi, J. Goldston@IT) and S. Gutmann
(Northeastern Y
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A clause of type(x, ... ,X,y) necessarily impliex=-y,
and(x, ... ,X,y,2) is equivalent tax,y,z) SO we once again
restrict ourselves t&=3. In contrast to the 1-ik problem,
we shall require a nontrivial representationfafse or true.
We will use pairs of variables to denote variables of the

There exists a huge class MP-Complete problem$1]_ boolean formula. Pairs 00 or 11 will represent vdlalseand
They possess a remarkable property: any instance of sonfgirs 01 or 10 will represeritue.

NP-complete problem can be converted into an instance of The next building block,(x,y,t)(y,z,t)(z,x,t) ensures
some otheNP-complete problem efficientljthat is the size thatt=1 if the majority ofx,y,z are 0 and=0 if the major-
of the new instance is bounded by the size of the originalty are 1. We shall use a shorthafd;Xx,y,2) to denote this.
instanceN raised to a finite powep (NP), and the time The expressiorf(z;;X;,Y1,Y2)f(Z;X,Y1,Y2) then ensurez
needed to convert it is also polynomial M. =x0y wherex,y,z are represented as pax,, Y1Y,, 212, as

For example the satisfiability problem and graphindicated above. The operation of negation is trivial to rep-
K-coloring problem are botiNP-complete problems. For resent: ifx=xX;x, then—x=(—x;)X,. These two are sufficient
each boolean formula we can build a graph that isto construct any boolean formula.

APPENDIX: ON THE NP-COMPLETENESS OF POSITIVE
1-IN-K SAT AND POSITIVE K-NAE-SAT
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