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In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the
satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables,g
=M /N. We introduce a set of macroscopic parameters(landscapes) and put forward an ansatz of universality
for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap
as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite
set of macroscopic variables(instead ofonly energy) is used, and are able to show the existence of a dynamic
thresholdg=gd starting with some value ofK—the number of variables in each clause. Beyond the dynamic
threshold, the algorithm should take an exponentially long time to find a solution. We compare the results for
extended and simplified sets of landscapes and provide numerical evidence in support of our universality
ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations
significantly reduced. This enabled us to obtain tight upper bounds on the satisfiability transition and to
recompute the dynamical transition using the extended set of landscapes.
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I. INTRODUCTION

An important open question in the field of quantum com-
puting is whether it is possible to develop quantum algo-
rithms capable of efficiently solving combinatorial optimiza-
tion problems(COP). In the simplest case the task in a COP
is to minimize the cost(energy) functionEs with the domain
given by the set of all possible assignments ofN binary
variables,s=hs1, . . . ,sNj, s j = ±1. The energy function pos-
sesses the locality property: it can be written as a sum of
functions, each involvingOs1d binary variables. One ex-
ample from physics is an Ising model, where the energy is
given by the sum over pairs of interacting spins

Es = o
kikl

Jiksisk. s1d

Another example from computer science is the satisfiability
problem. Each term of the energy function involvesK
=Os1d variables, and equals either 0 for combinations of
variables that are allowed, or 1 for combinations that violate
a constraint. The energy function then corresponds to the
number of violated constraints and the task is to find an
assignment of variables corresponding toE=0 or to show
that no such assignment existssEmin.0d. The satisfiability
problem belongs to the huge class of hardNP-complete
problems [1]. The time needed to solve these problems
grows exponentially withN using the best known classical
algorithms. The quantum computer emerges as a viable al-
ternative, and whetherNP-complete problems can be solved
efficiently on a quantum computer is a central open question.

Connections between physics and computer science were
made in seminal papers on simulated annealing[2] and the

applications of methods of classical statistical mechanics[3]
to optimization problems. Recently ideas from the replica
theory of classical spin glasses were successfully applied to
the design of novel algorithms[4]. It is only natural to ex-
tend this work to the quantum realm. Indeed, in the language
of quantum computation the minimization of the cost func-
tion is equivalent to finding the ground state of a Hamil-
tonianHP,

HP = o
s

Esuslksu, s2d

where the summation is over the 2N statesusl forming the
computational basis of a quantum computer withN qubits.

A new family of quantum adiabatic evolution algorithms
has been recently proposed by Farhi and co-workers[5,6].
This algorithm can be thought of as a quantum analogue of
the simulated annealing algorithm. Numerical simulations
were performed to study its performance for satisfiability
problems[7]. Note that owing to the locality property, effi-
cient implementation of these algorithms on a quantum com-
puting device is feasible[5,8,9]. Simulations of quantum
adiabatic evolution algorithms(QAA) for theseNP-complete
problems on a classical computer for randomly generated
problem instances that are hard for classical algorithms were
performed for small instancessN&25d [6,7,10]. Results sug-
gest aquadraticscaling law of the run time of the QAA with
N. Recent experiments[11] on quantum annealing of the
disordered ferromagnet LiHoxY1−xF4 show that quantum an-
nealing dramatically outperforms its classical counterpart,
thermal annealing. Note that the experimental realization of
the algorithm is not prone to finite-size artifacts that may cast
doubt on results of computer simulations. In other Monte
Carlo simulations of the quantum annealing algorithm on a
classical computer, it was shown to be superior to thermal
annealing[12]. Note that the performance increase would be
much larger if quantum annealing were implemented on a
quantum computing device. The general consensus is that the
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speedup is due to the effects of quantum tunneling between
states separated by high(but thin) barriers, impenetrable for
systems obeying classical dynamics[6,11,13].

Despite evidence for advantages of QAA over traditional
methods, no theoretical investigations into its performance
were made except for simple models[14]. We choose to
investigate this for a random hypergraph model, which is
believed to describe real-world examples fairly well. In prac-
tice, algorithms forNP-complete problems are characterized
by a wide range of running times, from linear to exponential,
depending on the choice of certain control parameters of the
problem(e.g., in satisfiability it is the ratio of the number of
constraints to the number of variables,M /N). Therefore, a
practically important alternative to the worst case complexity
analysis is the study of a typical-case behavior of optimiza-
tion algorithms on ensembles of randomly generated prob-
lem instances chosen from a given probability distribution.
For the example of the Exact Cover problem considered in
[6] (also called positive 1-in-3 SAT in[15]), one can define a
uniform ensemble of random problem instances. For each
one ofM constraints we choose at random three variables, so
that all combinations of variables have equal probability of
1/s N

3
d and the constraints are statistically independent.

Anticipating an exponential scaling law for the algo-
rithm’s running timesta it is convenient to analyze the dis-
tribution of a normalized logarithmic quantity logta/N. This
distribution becomes increasingly narrow in the limit of large
N where the mean valueklog tal /N well characterizes the
typical case exponential complexity of an algorithm. For the
satisfiability problem the dependence of the asymptotic
quantity

h = lim
N→`

klog tal/N s3d

on the clause-to-variable ratiog=M /N has the qualitative
form shown in Fig. 1. At some critical valueg=gd algorith-
mic complexity undergoes the dynamical transition from
polynomial to exponential scaling law. This transition has
been studied recently for the case of a variant of the classical
random-walk algorithm for the satisfiability problem[16].
Functionhsgd is nonmonotonic ing and reaches its maxi-
mum at a certain pointgc.gd. It was discovered some time
ago[17–19] that gc is a critical value for the so-called satis-
fiability phase transition: ifg,gc, a randomly drawn in-
stance is satisfiable with high probability, i.e., there exists at

least one bit assignments that satisfies all the constraints
sEs=0d. For g.gc instances are almost never satisfiable. In
the asymptotic limitN→` the proportion of satisfiable in-
stances drops from 1 to 0 infinitely steeply atg=gc as shown
in Fig. 1.

The value ofgd (unlike gc) depends on both the problem
at hand and the optimization algorithm. Recent years have
seen a growing interest in the study of dynamic threshold
phenomena for local search algorithms[16,20]. That effort is
in its initial stage and simple approximations(in the spirit of
annealing approximations) were employed to estimate the
location of the threshold. Comparison of the dynamical
thresholdsgd for different algorithms provides an important
relative measure of their typical-case performance in a given
problem.

This paper is organized as follows. In Sec. II we introduce
the Quantum Adiabatic Evolution algorithm and explain how
the complexity of the algorithm depends on the spectrum of
the Hamiltonian. In Sec. III we formulate the quasiclassical
approximation used to study the complexity and introduce
the notion of landscapes. In Sec. IV we introduce positive
K-NAE SAT and positive 1-in-K SAT—the NP-complete
problems, which we use as a test-bed for our method. In Sec.
V we provide detailed computation of entropy and land-
scapes within the annealing approximation. We discuss the
universality of landscape probability distributions in Sec. VI.
Sections VII and VIII are devoted to improving the anneal-
ing bound. A subgraph responsible for the hardest part of the
problem(a core) is identified and results are rederived for the
subgraph. In all cases we are concerned with finding the
dynamic threshold—the critical ratio of clauses to variables
above which the algorithm is expected to take an exponen-
tially long time to find a solution. We discuss our results as
well as possible ramifications and extensions of our work in
the Conclusions(Sec. IX). In the Appendix we sketch a
proof of NP-completeness of the problems considered.

II. QUANTUM ADIABATIC EVOLUTION ALGORITHM

Consider the time-dependent HamiltonianHstd;Hst /Td,

Hstd = s1 − tdHB + tHP, s4d

where t= t /TP s0,1d is dimensionless “time,”HP is the
“problem” Hamiltonian (2) and HB is a “driver” Hamil-
tonian, that is designed to cause transitions between the
eigenstates ofHP. Using dimensionless time and setting"
=1 the quantum state evolution obeys the equation,
iT]uCstdl /]t=HstduCstdl. At the initial moment the quan-
tum stateuCs0dl is prepared to be the ground state ofHs0d
=HB. In the simplest case

HB = − o
j=1

N

sx
j , uCs0dl = 2−N/2o

s

usl, s5d

wheresx
j is a Pauli matrix forj th qubit. Consider the instan-

taneous eigenstates ofHstd with eigenvalueslkstd arranged
in nondecreasing order at any value oftP s0,1d,

FIG. 1. Solid line shows the qualitative plot of the normalized
quantityh /hmax vs M /N (hmax is a maximum value ofh). Dashed
line shows the proportion of satisfiable instances vsM /N.
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Hstdufkstdl = lkstdufkstdl, s6d

herek=0,1,2, . . . ,2N−1. Provided the value ofT (the run-
time of the algorithm) is large enough and there is a finite
gap for all tP s0,1d between the ground and excited state
energies,l1std−l0std.0, the quantum evolution is adia-
batic and the state of the systemuCstdl stays close to an
instantaneous ground state,uf0stdl (up to a phase factor).
The stateuf0s1dl coincides with the ground state of the prob-
lem Hamiltonian HP and, therefore, a measurement per-
formed on the quantum computer at the final momentt
=T st=1d will yield one of the solutions of the COP with
large probability.

The standard criterion for adiabatic evolution is usually
formulated in terms of minimum excitation gap between the
ground and first excited states[21]

T @
E

Dlmin
2 , Dlmin = max

0øtø1
fl1std − l0stdg. s7d

Here the quantityE is less than the largest eigenvalue of the
operatorHP−HB [14] and scales polynomially withN in the
problems we consider.

III. QUASICLASSICAL APPROXIMATION AND
COMBINATORIAL LANDSCAPES

In the computational basis(2) we have

H = to
s

Esuslksu − s1 − td o
s,s8

dfdss,s8d,1guslks8u,

s8d

here dfm,ng denotes the Kronecker delta-symbol and the
summation is over the pairs of spin configurationss ands8
that differ by the orientation of a single spin,dss ,s8d=1,
where

dss,s8d =
1

2o
j=1

N

us j − s j8u, s9d

denotes a so-called Hamming distance between the spin con-
figurationss ands8, that is the number of spins with oppo-
site orientations. Equation(6) in the computational basis
takes form

lstdfsstd = tEsfsstd − s1 − tdo
s8

dfdss,s8d,1gfs8std

s10d

(here we drop the subscript indicating the number of a quan-
tum state inl and fs). In what follows we assume that
typical energiesEs=OsNd, but the change in the energy after
a single spin flip isOs1d. This assumption about the energy
landscape holds for instances of the satisfiability problem
with the clause-to-variable ratioM /N=Os1d, the case of
most interest for us(see the discussion in Sec. I).

We now consider a set of functionshXl =Clss ,Id , l
=1, . . . ,Kj, referred to as(combinatorial) landscapes, that
depend on a problem instanceI and project a spin configu-

ration s onto a vectorhXlj with integer-valued components.
Prior to considering a specific COP here we make certain
assumptions about the properties of landscapes and apply
them to the analysis of the minimum gap in the QAA.

In particular, we assume that, similar to energy, land-
scapeshXl =Clss ,Idj are macroscopic functions, so that the
typical values ofXl areOsNd, and possess a certainuniver-
sality property in the asymptotic limitN→`. Specifically,
the joint distribution ofhClss ,Idj over the spin configura-
tions s forming the 1-spin-flip neighborhood of an “ances-
tor” configurations8 depends on a problem instanceI and
spin configurations8 only via the set of parametershXl8
=Clss8 ,Idj. We then define a quantity

PshXljuhXl8jd =
1

N
o

dss,s8d=1

p
k=1

K
dfXl,Clss,Idg,

Xl8 = Clss8,Id. s11d

In effect, the above universality property of landscapes im-
plies that the set of all possible spin configurationss is
divided into “boxes” with coordinateshXlj whereXl =Clssd,
and PshXlj u hXl8jd (11) represents the transition probability
from box hXlj to box hXl8j. In particular, it obeys Bayes’ rule

PshXljuhXl8jdVshXl8jd = PshXl8juhXljdVshXljd, s12d

whereVshXljd is the number of different spin configurations
in the boxhXlj.

We consider energy to be a smooth function of landscapes

Es = EshXljd, Xl ; Clss,Id, s13d

so thatu]E/]Xlu=Os1d. Furthermore, we assume that, on one
hand, the change inClss ,Id after flipping one spin isOs1d,
for typical problem instances. On the other hand, we assume
that correlation properties in a neighborhood of a boxhXlj
described byPshXlj u hXl8jd vary smoothly with box coordi-
nates on a scale 1& udXlu!N. Therefore if we write the tran-
sition probability in the form

PshXl8juhXljd = pshXl8 − Xlj;hxljd, hxl ; Xl/Nj, s14d

then pshklj ; hxljd is a steep function of its first argument: it
decays rapidly in the range 1& uklu!N for eachl-component.
However this is a smooth function of its second argument: it
varies slightly when coordinatesxl change on a scaleudxlu
!1.

One can show that under the above assumptions the quan-
tum amplitudesfs corresponding to the smallest eigenvalue
depend on the spin configurations only via the coordinates
of this box hXlj to which it belongs. Then we look for the
solution of Eq.(10) in the following form:

fsstd =
wshXlj,td
ÎVshXljd

, hXl ; Clss,Idj, s15d

whereuwshXlj ,tdu2 gives the probability of finding the system
in the boxhXlj. Plugging Eq.(15) into Eq. (10) and making
use of Eqs.(12) and (13) we obtain:

QUANTUM ADIABATIC OPTIMIZATION AND … PHYSICAL REVIEW E 70, 036702(2004)

036702-3



lstdwsX,td = tEsXdwsX,td − s1 − tdNo
X8

LshX,X8jdwsX8,td,

s16d

X ; hX1,X2, . . . ,XKj s17d

(hereafter we use the above shorthand notation for the set of
landscapes). In (16) we introduced

LsX,X8d = LsX8,Xd = PsX8uXdÎ PsXd
PsX8d

,

PsXd = 2−NVsXd, s18d

where PsXd is a probability that a randomly sampled con-
figurations belongs to a boxX. We shall look for a solution
of (16) in the WKB-like form

wsX,td = expf− WsX,tdg, s19d

so that

lstd = tEsXd − s1 − tdNo
X8

LsX,X8deWsX,td−WsX8,td.

s20d

We now introduce scaled variables[cf. (14)]

x =
X

N
, G =

1 − t

t
, g =

l

tN
, s21d

and also

wsx,Gd ;
1

N
WsX,td, «sxd ;

1

N
EsXd, ssxd ;

1

N
log VsXd,

s22d

where ssxd is an entropy function. Based on(18) and the
properties of the transition probability[see Eq.(14) and the
discussion after it] we assume that the sum overX8 in (20) is
dominated by terms withuX8−X u=Os1d. Then we can use an
approximation

WsX8,td − WsX,td < =w · sX8 − Xd + Os1/Nd, s23d

where=w;]wsx ,Gd /]x. Plugging(23) into (20) and mak-
ing use of Eqs.(14), (18), (21), and (22) we obtain after
some transformations:

g = hsx,=w;Gd,

hsx,p;Gd = «sxd − Go
k

psk ;xde−k·s=s/2+pd s24d

[here=s;]ssxd /]x]. This is a Hamilton-Jacobi equation for
an auxiliary mechanical system with coordinatesx, momenta
p==w, actionw, Hamiltonian functionhsx ,p ;Gd and energy
g. Using the symmetry relation

psk ;xde−k·=s/2 = ps− k ;xdek·=s/2, s25d

that follows directly from Eqs.(12) and (18) we obtain that
the minimum ofwsx ,Gd over x where =w=0 necessarily

corresponds to the minimum of the functional:

fsx,Gd = «sxd − G,sxd, s26d

where fsx ,Gd;hsx ,0,Gd and

,sxd = p̃s=s/2;xd, p̃sy;xd ; o
k

psk ;xde−k·y. s27d

The summation in(24) and (27) is over componentskl of k
in the rangekl [ s−` ,`d. In what follows, we shall refer to
p̃sy ;xd in (27) as a “Laplace transform” ofpsk ;xd.

We note that,sxd=ox8LsX8 ,Xd and one can use Bayes
rule and the Cauchy-Bunyakovsky inequality in(18) to show
that that the positive-valued function,sxd is bounded from
above, 0,,sxdø1. This shows that the analysis of the ef-
fective potential based on the WKB approximation(23) is
self-consistent in the asymptotic limitN→`.

It follows from the above analysis that the ground-state
wave functioncsx ,Gd;wsX ,td is concentrated inx-space
near the bottom of the “effective potential” given by the
functional fsx ,Gd, i.e., near the pointx*sGd where fsx ,Gd
reaches its minimum. In this regionS<1/2xTÂx, where ma-

trix Â is positive definite, and according to(19), the wave
function has a Gaussian form with width~1/ÎN.

The ground-state energyg;gsGd is given by the value of
the effective potentialf (26) at its minimum

gsGd = f„x*sGd,G…,

u]fsx,Gd/]xux=x* sGd = 0, fsx,Gd ù gsGd. s28d

We note that asG→0 the shape of the effective potential
fsx ,Gd approaches that of the energy function«sxd and there-
fore its minimumx*sGd→x0 wherex0 is a minimum of«sxd.
It can be shown that in this limit the ground-state eigenvalue
approaches the minimum energy value«sx0d and the eigen-
values ofA−1 approach zero[and so does the characteristic
width of the wavepacketcsx ,Gd]. The spin configurations
that belong to a boxx0 in x-space correspond to the solutions
of the optimization problem at hand. It is clear that one of the
solutions can be recovered with high probability after a mea-
surement is performed at the end of the “quantum annealing”
procedure.

Variational ansatz:For cases in which the set of macro-
scopic variableshXlj is not sufficient[in a statistical sense
(14)] to describe the dynamics of the quantum algorithm, one
can still implement the above procedure as anapproxima-
tion, using a variational method. Introducing a Lagrangian
multiplier l, one looks for the minimum of the functional
Fsw ,ld=kfuHufl−lskf ufl−1d, using a variational ansatz
(15) for the wave function. The solution of the variational
problem is provided by Eqs.(19)–(28). The smallest eigen-
valueg (28) corresponds to the value of the Lagrange mul-
tiplier at the extremum,l=tNg, and the maximum of the
variational wave function corresponds to the minimum of the
effective potentialf (26).

Global bifurcations of the effective potential.However, in
the case of a global bifurcation where the effective potential
fsx ,Gd possesses degenerate or nearly degenerate global
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minima, the answer is modified. If for some value ofG=G* ,
a global bifurcation occurs, in our example this would mean
that for this value ofG, two values ofx, x*

+ and x*
− give a

global minimum tofsx ,Gd. In such a case, the smallest ei-
genvalue is not doubly degenerate; rather an exponentially
small gapDlmin between the ground and first excited state is
developed, itself being proportional to the overlap between
two wave functions, peaked aroundx*

+ andx*
−, respectively.

To estimate the overlap we note that atG* the two global
minima of the effective potentialfsx ,G*d correspond to the
two coexisting fixed points of the Hamiltonian function in
(24) with zero momentum and the same values of energyg,

]f/]x = ]h/]x = ]h/]p = 0, s29d

x = x*
±, p = p*

± = 0, gsx,p;G*d = g*
+ = g*

−. s30d

Then to logarithmic accuracy we have

1

N
log Dgmin =E

−`

`

dt8fẋst8dpst8d − h„xst8d,pst8d…g + Os1/Nd,

s31d

where(xstd ,pstd) is a heteroclinic trajectory connecting the
two fixed points of(24)

ẋstd = ]h/]p, ṗstd = − ]h/]x,

xst → ± `d = x*
±, pst → ± `d = 0. s32d

From the algorithmic perspective this means that whenG
gets close toG* , it has to change exponentially slowly[cf.
Sec. II and Eq.(7)]. This could be called a critical slowing
down in the vicinity of a quantum phase transition. If simu-
lated annealing(SA) is used and a similar phenomenon oc-
curs, the value of the temperatureT* is the point where a
global bifurcation occurs in the free energy functional

fsx,Td = «sxd − Tssxd. s33d

By comparing the free energy functional(33) with the func-
tional (26) corresponding to “quantum annealing”(QA), we
note that in QA the quantitiesG and ,sxd play the roles of
temperature and entropy in SA, respectively.

We note in passing that a similar picture for the onset of
global bifurcation that can lead to the failure of QA and(or)
SA was proposed in[14,22] for the case where the energyEs

is a nonmonotonic function of a single landscape parameter,
a total spino j=1

N s j. In this case the dynamics of QA can be
described in terms of one-dimensional effective potential
[23,24].

IV. THE MODELS

An instance of a satisfiability problem withN binary vari-
ables committed toM =gN constraints(where each con-
straint is a clause involvingK variables) can be defined by
the specification of the following two objects. One of them is

an M 3N matrix Ĝ, the rows of the matrix are independent
K-tuples of distinct bit indexes sampled from the interval

s1,Nd. The mth row of Ĝ defines the subset of theK binary
variables involved in themth clause. The second object is a
set of boolean functionsB=hbmj, with each function encod-
ing a corresponding constraint. A functionbm
=bmfsGm1

,sGm2
, . . . ,sGmK

g is defined over the set of 2K pos-
sible assignments of the string ofK binary variables involved
in the mth clause. The function returns value 1 for assign-
ments of binary variables that satisfy the constraint and 0 for
bit assignments that violate it. Then the energy function
equals to the number of violated constraints

Es ; EssId = M − o
m=0

M

bmfsGm1
,sGm2

, . . . ,sGmK
g, s34d

hereI=sG ,Bd denotes an instance of a problem.

The matrixĜ defines a hypergraphG that is made up of
the set ofN vertices(corresponding to the variables in the
problem) and a set ofM hyperedges(corresponding to the
constraints of the problem), each one connectingK vertices.
An ensemble ofdisorder configurationsof the hypergraph
corresponds to all the possible ways one can placeM =gN
hyperedges amongN vertices where each hyperedge carries
K vertices. Under the uniformity ansatz all configurations of
disorder are sampled with equal probability[i.e., rows of the

matrix Ĝ are independently and uniformly sampled in the
s1,Nd interval].

Boolean functionsbm may also be generated at random
for each constraint with an example being randomK-SAT
problem[25,26]. However here we consider slightly differ-
ent versions of the random satisfiability problem that are still
defined on a random hypergraphG but have a nonrandom
boolean functionbm=b, identical for all the clauses in a
problem. One of the problems is Positive 1-in-K SAT in
which a constraint is satisfied if and only if exactly one bit is
equal to 1 and the otherK−1 bits are equal to 0. The boolean
function b for this problem takes the form

bfa1,a2, . . . ,aKg = dFo
p=1

K
1 − ap

2
,1G

sPositive 1-in-K SATd. s35d

ap = ±1, p = 1,2, . . . ,K.

We shall also consider another problem, Positive
K-NAE-SAT, in which a clause is satisfied unless all vari-
ables that appear in a clause are equal
(“K-Not-All-Equal-SAT”). The boolean functionb for this
problem takes the form

bfa1,a2, . . . ,aKg = 1 − o
s=±1

dFo
p=1

K
1 + sap

2
,0G

sPositiveK NAE-SATd. s36d

Both problems areNP-complete (Appendix). It will be
shown below that they are characterized by the same set of
landscape functions.
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V. LANDSCAPES: ANNEALING APPROXIMATION

For a particular spinssd and disordersGd configurations,
all clauses can be divided into 2K distinct groups according
to the values of the binary variables that appear in a clause.
We will label the different types of clauses by vectorial index
a=ha1, . . . ,aKj, ap= ±1. We now divide the set of 2N spin
configurations into boxes identified by certain numbers of
clauses of each type,NMa, and also by the Ising spin in a
configurationNq,

Ma ; Mass,Gd =
1

N
o
m=1

M

p
p=1

K

d fsGmp
,apg, s37d

q ; qssd =
1

N
o
j=1

N

s j . s38d

Different boxes correspond to macroscopic states defined by
the set of parameterssq,hMajd with qP s−1,1d and
oaMa=g. The energy function can be expressed via(37) as
follows [cf. (34)–(36)]:

«shMajd = g − o
m=0

K

zmMm,

(39)

Mm ; o
a

MadFK − 2m,o
p=1

K

apG ,

where the form of the coefficientszm depends on the prob-
lem:

zm = Hd fm,1g sPositive 1-in-K SATd
1 − d fm,0g − d fm,Kg sPositiveK-NAE-SATd.

J
s40d

In the following we compute an approximation to the ef-
fective potential(26), using the landscape functions(37) and
(38). According to(27) it depends on the entropy function
ssq,hMajd and the transition probability(14) between dif-
ferent macroscopic states. Recalling that variablesq andMa

are normalized by the factorN we study the probability of
transition, psn,hraj ;q,hMajd, from the statesq,hMajd to
the statesq+n/N,hMa+ra /Njd. The Laplace transform ofp
with respect ton,hraj has the form[cf. (27)]

p̃su,hyaj;q,hMajd = o
n,hraj

e−un−oayarapsn,hraj;q,hMajd.

s41d

We assume that all binary variables are also subdivided into
distinct groups based on their values=±1 and a vectork
with integer coefficientska

p indicating the number of times a
variable appears in a clause of typea in positionp. Clearly,
consistency requires thatka

p =0 unlessap=s. We now define
a quantitycs,k which is equal to the fraction of spins with
given s ,k. For a spin configurations there exists a set of
coefficientshcs,kj with elements of the set corresponding to
all possible values ofs andk (there will be many 0’s in a set
for each spin configuration). In general, there are exponen-

tially many setshcs,kj that correspond to a macroscopic state
sq,hMajd

o
s,k

scs,k = q, o
s,k

ka
pcs,k = Ma sp = 0,1, . . . ,Kd. s42d

Coefficientshcs,kj are concentrations of spin variables with
different types of “neighborhoods.” We shall assume that in
the limit of largeN the distribution of coefficientscs,k cor-
responding to the same macroscopic state(42) is sharply
peaked around their mean values(with the width of the dis-
tribution ~N−1/2).

Under the above assumption we can immediately com-
pute the Laplace-transformed transition probability(41) in
terms of the coefficientscs,k. Indeed, consider flipping a spin
with values and neighborhood type given by vectork. This
will change the total spin by −2s and for each clause of type
a and indexpP s1,Kd the value ofNMa will decrease by
ka

p. On the other hand, for the clause typea8; āsp,ad ob-
tained by flipping a bit inpth position ina, NMa8 is corre-
spondingly increased byka

p. Hence the Laplace-transformed
transition probability is

p̃su,hyaj;q,hMajd = o
s,k

cs,k expF2us + o
p,a

sya − yāsp,addka
pG ,

s43d

where the coefficientscs,k are set to their mean values in a
macroscopic state(42).

A. Entropy and coefficientscs,k in a macroscopic state defined
by q and ˆMa‰

Here we use the annealing approximation to estimate the
mean values ofcs,k and also of a macroscopic statesq,Mad.
We start by introducing the concept of annealed entropy. Let
N be the number of spin configurations subject to some con-
straints. In general, it is a function of the disorder realization.
The annealed entropy is defined as the logarithm of its dis-
order average:sann= lnkNl. Note that for the correct,
quenched, entropy the order of taking a logarithm and disor-
der average is reversed.

Since in the random hypergraph model all disorder con-
figurations are equally probable, annealed entropy is given as
sann= lnNS,G−lnNG, whereNS,G is the total number of spin
and disorder configurations andNG is the number of disorder
configurations.

For enumerating all possible disorder configurations we
depart slightly from the traditional random hypergraph
model. In our model all clauses are ordered(two disorder
configurations where any two clauses are permuted are
deemed different); clauses can be repeated(the same clause
can appear twice); the order of variables in a clause is im-
portant(two disorder configurations are different if the order
of variables in any clause is changed); and finally, variables
can be repeated in a single clause. This change does not alter
the underlying physics, since the probability that two identi-
cal clauses appear is infinitesimal, and a variable enters a
clause twice in at mostOs1d clauses, which can be safely
neglected. As regards the distinction between the disorders
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with permuted clauses, this only introduces a combinatorial
factor which cancels out. The advantage is that each disorder
can be represented as a sequence ofM K-tuples of integers
from 1 to N.

We will first compute the annealed entropy of a macro-
scopic statesq,hMajd under additional constraints: we fix
the valuescs,k and compute the annealed entropy as a func-
tion of q,hMaj ,hcs,kj. Recalling thatMa are the numbers
of clauses of a given type scaled byN, and the total number
of clauses isgN, we obtain the number of joint spin-disorder
configurations as a product of the following factors:

(i) the number of ways to assign types to clauses
sNgd! / pasNMad!,

(ii ) the number of ways to assign types to variables
N! / ps,ksNcs,kd!,

(iii ) for all p, a, the number of ways to permute the ap-
pearance of variables inpth position of clauses of typea:
sNMad! / ps,kska

p!dNcs,k.
Consequently, the annealed entropy is given by

sannfhcs,kj;q,hMajg = − o
s,k

cs,k lnFcs,kp
p,a

ska
p!dG

+ sK − 1do
a

Ma ln Ma + g ln g − gK.

s44d

In the largeN limit we replacecs,k by their annealed aver-
ages, i.e., the values that maximize the annealed entropy. In
its simplest form, we place no constraints oncs,k except
consistency requirements(42). Associating Lagrange multi-
pliers l and lnma

p with these constraints, the expression for
the entropy can be rewritten as

sannfq,hMajg = min
l,ma

p
H− lq + o

p,a
Ma ln

Ma

ma
p + ln Zfl,hma

pjgJ
− o

a

Ma ln Ma + g ln g − gK. s45d

The values ofcs,k are given by

cs,k =
1

Z
elsp

p,a
sma

pdka
p
/ka

p!, s46d

andZ is given by

Z = expSl + o
a

o
p

d fap,1gma
pD

+ expS− l + o
a

o
p

d fap,− 1gma
pD . s47d

The values of the Lagrange multipliersl, ma
p are related to

q,hMaj via

] ln Z

]l
= q, s48d

ma
p ] ln Z

]ma
p = Ma. s49d

From here we obtain the expression for the Lagrange multi-
plier ma

p,

Ma

ma
p =

1 + apq

2
. s50d

Then introducing a new notation

m± = o
p,a

1 ± ap

2
ma

p ,

M± = o
p,a

1 ± ap

2
Ma, s51d

we obtain

Z = elem+ + e−lem−, m± =
2M±

1 ± q
. s52d

Then the entropy can be rewritten in the following form:

sannfq,hMajg = − lq + M+ ln
1 + q

2
+ M− ln

1 − q

2
+ ln Z

− o
a

Ma ln Ma + g ln g − gK. s53d

We now use

elem+ = Z
1 + q

2
, e−lem− = Z

1 − q

2
s54d

and obtain the expression for the second Lagrange multiplier
l,

− lq = −
1 + q

2
ln

1 + q

2
−

1 − q

2
ln

1 − q

2
− ln Z + gK.

s55d

Upon substitution ofl from the above into the expression for
sann (53) we finally obtain the annealed entropy

sannfq,hMajg = − q tanh−1 q − ln
Î1 − q2

2
+ M+ ln

1 + q

2

+ M− ln
1 − q

2
− o

a

Ma ln Ma + g ln g.

s56d

Also the coefficientscs,k are given by(46) and (47) with
Lagrange multipliers given in(50) and (55).

B. Effective potential

Consider a factor,sxd=s]f /]Gd« (26) and (27) in the ex-
pression(26) for effective potential withx;sq,hMajd. It
follows from (27) that to find this factor we need to evaluate
the Laplace-transformed probability(41) and (43) at
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u = 1
2]sann/]q, ya = 1

2]sann/]Ma. s57d

This is where the Lagrange multipliers come in handy as we
can immediately claim that

]sann/]q = − l, s58d

]sann/]Ma = o
p

ln
Ma

ma
p − ln Ma. s59d

Note that in differentiating with respect toMa above we
omitted the constant term. This is permissible since only dif-
ferences]qann/]Ma−]qann/]Ma8 appear in Eq.(43). A fur-
ther refinement is to write

o
p

ln
Ma

ma
p = o

p

ln
1 + spq

2
= K ln

Î1 − q2

2
+ o

p

sp tanh−1 q.

s60d

Using this in the Eqs.(27) and (43), we obtain

,sq,hMajd =
1

Z
o
s,k

p
p,a

3Sma
pe1/2Sp8ssp8−s

p8
8 dtanh−1 qÎMa8

Ma
Dka

p

/ka
p!.

s61d

Since 1/2op8ssp8−sp8
8 d;sp (wherea8 is obtained froma

by flipping pth bit) and also

Ma/ma
p =

Î1 − q2

2
esp tanh−1 q, s62d

the expression is considerably simplified

,sq,hMajd =
2

Z
expS 2

Î1 − q2 o
ka,a8l

ÎMaMa8D , s63d

where the sum is over pairska ,a8l that differ in exactly one
position

1

2o
p=1

K

ua j − a j8u = 1. s64d

To evaluateZ we write

Z =
2

Î1 − q2
Îem+em− =

2
Î1 − q2

expS M+

1 + q
+

M−

1 − q
D

s65d

and the expression for, becomes

,sq,hMajd = Î1 − q2 expS2Ska,a8lÎMaMa8
Î1 − q2

−
M+

1 + q

−
M−

1 − q
D . s66d

HereM± are given in(51).

We note that the effective potentialfsq,hMajd
=«shMajd−G,sq,hMajd is symmetric with respect to per-
mutation of individual components inhMaj corresponding
to different orders of −1’s and +1’s in the vectorial indexa.
We look for the minimum offsq,hMajd using the symmetric
ansatz

Ma = SK

m
D−1

Mm, m= o
p=1

K
1 − ap

2
, s67d

wherem is the number of −1’s ina. Substituting(67) into
(66) and rewriting

,̄sq,hMmjd = Î1 − q2 expS2Sm=0
K−1Îsm+ 1dsK − mdMmMm+1

Î1 − q2

−
Kg + qSm=0

K sK − 2mdMm

1 − q2 D s68d

where we defined,̄sq,hMmjd;,sq,hMajd. The effective
potential is then

f̄sq,hMmjd = «shMmjd − G,̄sq,hMmjd sQAd, s69d

with energy given in(39). In the case of the SA algorithm the
corresponding free-energy functional(33) is

f̄sq,hMmjd = «shMmjd − Ts̄sq,hMmjd sSAd, s70d

where the entropy function equals

s̄sq,hMmjd = − q tanh−1 q + sgK − 1dln
Î1 − q2

2
− So

m=0

K

sK

− 2mdMmDtanh−1 q − o
m=0

K

Mm ln
Mm

SK

m
D . s71d

If we were to use an even smaller set of macroscopic
parameters(e.g., only the energy«) we can still employ for-
mula (68) with the proviso that unspecified variables should
be taken to equal their most likely values, i.e., those that
maximize the entropy s̄sq,hMmjd not the landscape

,̄sq,hMmjd. For example, in the case of energy-only land-

scapes,,̄= ,̄s«d, the valuesq,hMmj that maximizes̄sq,hMmjd
for a given energy « and number of hyperedges
gNsom=0

K Mm;gd should be computed and then substituted

into the expression for,̄ (68).
We compute, within the annealing approximation, the

point of static transitiongc (cf. Fig. 1), where the entropy of
the macroscopic state with zero energy vanishes,ss0d=0,
and the dynamic transitiongd; for connectivitiesg.gd an
effective potential(69) exhibits a global bifurcation for some
G=G* . The resulting values are given in Table I(see also
Figs. 2 and 3). Note that in 1-in-3 SAT andK-NAE-SAT for
(K=3, 4, 5) we find no dynamical phase transition before the
satisfiability threshold(cf. Fig. 1).

In Fig. 4 we plot time variations of the landscape param-
eters,Mm=M*m, corresponding to the global minimum of the
effective potential. In Fig. 5 we plot a time-variation of the
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scaled ground-state energyg given by the value of the effec-
tive potential at its minimum. Singular behavior correspond-
ing to the first-order quantum phase transition at certaint
=t*sG=G*d can be clearly seen from the figures. Plots in
Figs. 4 and 5 correspond to precisely the static transitiong
=gc for the case ofK=4 in 1-in-K SAT problem. In the
regiongd,g,gc there are an exponential(in N) number of
solutions to the satisfiability problem but the runtime of the
quantum adiabatic algorithm to find any of them also scales
exponentially withN. This is a hard region for this algo-
rithm. We note that in the limit ofK→` the annealing ap-
proximation becomes exact. Together with the fact that for
large K gd and gc seem to be distinctly different provides
evidence that this result(the existence of a hard region for
quantum adiabatic algorithm) is robust.

VI. UNIVERSALITY PROPERTY FOR TRANSITION
PROBABILITIES

Here we study the universal features of the transition
probability in (11) for the set of macroscopic variables cor-
responding to the(normalized) total Ising spinq and num-
bers of clauses of different typeshMmj (39) (the type of a
clause is equal to the number of unit bits involved in the
clause). For simplicity, we shall focus in this section on the
caseK=3 only.

To clarify the above choice of macroscopic variables we
consider an auxiliary quantity: a conditional probability dis-
tribution of the macroscopic variablessq,hMmjd over the set
of all possible configurationss obtained by flippingr bits of
the configurations8. The first moments of this distribution
corresponding toMm,

mm = SN

r
D−1

o
s

d fdss8 − sd,rgMmss,Id, m= 0, . . . ,K,

s72d

can be easily computed by counting the number of ways one
can flip r bits in configurations8 to transform aK-bit clause
of m8 type (i.e., with m8 unit bits) into a clause of themth
type

mm = SN

r
D−1

o
p,m8=0

K

Mm8Sm8

p
DS K − m8

m− m8 + p
D

3S N − K

r − 2p − m+ m8
D s73d

[here we use the conventions n
m

d;0 for m,0 andm.n]. In
the double sum above, values ofMm8 are multiplied by the
number of possible ways to flip three groups of bits:p unit
bits in a clause ofm8-type,p+m−m8 zero bits of this clause,
and r −2p−m+m8 bits of the configurations8 that do not
belong to the clause. Similarly, one can show that the first
moment corresponding to the variableq equalsq8s1−2r /Nd.
It is clear that dependence of the first moments on the ances-
tor configurations8 is only via the variablesq8 , Mm8 for that
configuration.

In the limit, r @1, the above conditional distribution has a
Gaussian form with respect toq and Mm. Elements of the

covariance matrixSmq
m8q8ss8d=Osrd, and correspondingly, the

characteristic width of the distribution isOsr1/2d. For a con-
figuration s8 randomly sampled in the boxsq,hMmjd the

FIG. 2. Staticgc (circles) and dynamicgd (diamonds) transition
for positive 1-in-K SAT for various values ofK.

FIG. 3. Staticgc (circles) and dynamicgd (diamonds) transition
for positiveK-NAE SAT for various values ofK.

TABLE I. Annealing bounds for dynamicsgdd and staticgcd transition for positive 1-in-K SAT and
positiveK-NAE SAT for different values of the number of variables in a clauseK. No value(—) indicates the
absence of dynamical transition.

K 3 4 5 6 7 8 9 10

1-in-K gd — 0.650 0.557 0.475 0.416 0.371 0.335 0.305

gc 0.805 0.676 0.609 0.548 0.500 0.461 0.428 0.400

K-NAE gd — — — 19.8 34.9 61.7 109 196

gc 2.41 5.19 10.7 21.8 44.0 88.4 177 355
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r.m.s. deviation of the elements ofSmq
m8q8ss8d from their mean

values in the box isOsN1/2d. It is clear that in the limitr
@N1/2 the covariance matrix elements can be replaced by
their mean values for the macroscopic statesq,hMmjd. There-
fore in this limit the conditional distribution afterr spin flips
starting from some macroscopic state depends only on the
values ofsq,hMmjd in this state(universality property).

One can show that forr !N1/2 the conditional distribution
after r spin flips can be expressed via the distribution(11)
with r =1, using a standard convolution rule. Implicit in our
derivation of landscapes is the relation betweenr =1 land-
scapes and a set of quantitieshcs,kj. Universality of land-
scapes should be interpreted as the fact thathcs,kj are self-
averaging. Had we included only the energy instead of a full
set of parameters, we would not have expected to see such
self-averaging in the so-called replica-symmetry-broken
phase. It is possible that inclusion of the full set of landscape
parameters assures universality. We performed a series of
numerical studies to test this hypothesis. In Fig. 6 we present
the results of numerical simulations and the comparison with
analytic results within the annealing approximation. One can
see that the property of self-averaging holds and that even
the annealing approximation provides a very good descrip-
tion.

VII. RANDOM GRAPH ENSEMBLES WITH REDUCED
FLUCTUATIONS

One can easily point to a major deficiency of the anneal-
ing approximation—the fact that it fails to correctly predict
the satisfiability transition. While part of this can be attrib-
uted to the fact that real entropy is slightly different from
what is predicted by the annealing approximation, the major
source of error is the incorrect assumption that the entropy
vanishes at the satisfiability transition. That the entropy does
not vanish can be easily seen by examining the structure of
the random graph. At any finite connectivity(above percola-
tion) it consists of one giant component and a largeOsNd
number of smallOs1d components. Each small component
makes anOs1d contribution to the entropy for a totalOsNd
contribution, hence the entropy is in fact positive at all con-
nectivities, including the satisfiability threshold.

A. Concept of a core

An improvement over the annealing bound for the satis-
fiability threshold is possible. Note that clauses outside of the
giant component do not affect satisfiability and hence can be
disregarded. Similarly, one can identifyirrelevant clauses
and remove them. Irrelevant clauses are those that can be
eliminated without changing the satisfiability of the entire
problem. We shall illustrate the identification of irrelevant
clauses based on local properties for positiveK-NAE SAT
and positive 1-in-K SAT.

1. Positive K-NAE SAT

For K-NAE SAT we can identify variables that do not
enter any clause and remove them without affecting the sat-
isfiability of the formula. Any variable that appears inexactly
oneclause can also be eliminated together with that clause,
since the value of that variable can be adjusted to satisfy that
clause. As one removes such a clause, other variables may
become candidates for removal. One can write an algorithm
that iteratively removes variables that appear in zero or ex-
actly one clause until no such variables remain(see Fig. 7).
In fact using such an algorithm improves the running time of
classical algorithms. The cost of this additional preprocess-
ing is negligible: by using special data structures this algo-
rithm can be made to run inOsN ln Nd time.

It is not surprising that the result of running such atrim-
ming algorithm is a set of clauses and variables with a con-
dition that every variable appears in at least two clauses.
However, the statistical properties of the remainingcore are
not immediately apparent. As a first step, observe that the
resulting core is independent of the order in which clauses
and variables were removed. Hence we can study one spe-
cific algorithm.

First, we eliminate all variables of degree 0(that appear in
no clauses). In the initial problem all instances withN vari-
ables andM clauses were equally probable. The number of
vertices of degree 0,N0 does fluctuate, but forevery specific
value of N0 all instances withN−N0 variables, andM
clauses, and the additional property that each variable ap-
pears in at least one clause, are equiprobable. This property

FIG. 4. Plots of the landscape parametersMm=M*m at the glo-
bal minimum of the effective potential vst for K=4 and g=gc

(1-in-K SAT problem). Curves labeled 0–4 correspond toM*0 /g
throughM*4 /g.

FIG. 5. Scaled energy of adiabatic ground stateg0 vs t for K
=4 andg=gc (1-in-K SAT problem).
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is referred to asuniform randomness. As a next step, identify
variables of degree 1(appearing in exactly one clause). Al-
though their numberN1 also fluctuates, for any fixedN1, N
and M all instances withN variables of whichN1 variables
have degree 1 andM clauses are equiprobable.

At each subsequent step of the algorithm we chooseat
random a variable of degree 1 amongN1 candidates, and
delete it together with the clause in which it appears. If the
degree of any other variable in that clause becomes 0, it is
also deleted. Some variables which had degree 2 previously
may become degree 1 variables. ObviouslyM8=M −1, but
the values ofN8 and N18 cannot be predicted. But since the

variable chosen for deletion was chosen at random(among
all degree 1 variables), one can show that although the values
of N8 and N18 cannot be predicted, for every fixed set of
hN8 ,N18 ,M8j all instances are equiprobable.

At the end of the algorithmN1;0, hence for fixedN8,
M8, all instances withN8 variables,M8 clauses and the con-
dition that each variable appear in at least two clauses are
equiprobable. Since average changes inN, N1 andM at each
step wereOs1d and corresponding deviations were alsoOs1d,
after OsNd steps needed for completion of the algorithm,
fluctuations in resultingN8 and M8 are onlyOsÎNd by the
central limit theorem and can be neglected in our analysis.

FIG. 6. (Color) Results of numerical simulations and their comparison with theory. Depicted are Laplace transforms ofM1 for 1-in-3
SAT. Numerical results: curves that have different colors correspond to different random problem instances; curves of same color correspond
to different random bit strings. The dashed black line is a theoretical result based on the annealing approximation. The insets(a)–(e) depict
instances with 103, 104, 105, 106, and 107 binary variables. Since the error is not visible we replot in(f) a magnified section of inset(e). The
bit strings were sampled withq=0.422,M0=0.048,M1=0.416,M2=0.123,M3=0.013, corresponding toM /N=0.6. These values correspond
to the energyE` /2 and they are shifted by 10% from the most likely values ofq,hMmj for this energy(this shift is@N1/2). We also note that
for 1-in-3 SAT numerical simulations give the static phase transition atgc<0.63.

QUANTUM ADIABATIC OPTIMIZATION AND … PHYSICAL REVIEW E 70, 036702(2004)

036702-11



There are several methods to derive the average resulting
values ofN8, M8. The most straightforward is to study the
evolution of N, N1 and M by solving differential equations
for their average values. This is somewhat tedious and less
general. We instead resort to a different method of self-
consistency equations. For every instance one can identify a
setC of variables that form acore, i.e., those that will not be
deleted by the trimming algorithm. We now extend that set to
C8 using the following rules:

(1) If a variable belongs toC, it also belongs toC8.
(2) If K−1 variables in some clause belong toC8, then

the remaining variable must also belong toC8.
The minimal setC8 is obtained fromC by iteratively add-

ing variables according to these rules. Let the number of
variables in setC8 be equal toqN with q,1. Fluctuations in
q areOs1/ÎNd and, consequently, are neglected.

Now introduce thesN+1dst variable and compare systems
with N variables andN+1 variables. Together withsN
+1dst variable introduceDM clauses each involving that
variable andsK−1d random variables. The numberDM is a
Poisson random variable with parameterKg. We can com-
pute the probability that the new variable belongs toC8 of the
enlarged instance. The new variable belongs toC8 if for at
least one of theDM clauses,K−1 variables other than the
new variables are not inC8 at the same time. Since these
clauses are connected to random vertices, that probability
can be expressed viaq alone and, owing to the fact thatDM
is Poisson, equals 1−exps−KgqK−1d. Self-consistency re-
quires that this probability be equal toq:

1 − q = e−KgqK−1
. s74d

For practical purposes we must seek the largest solution to
this equation.

Note that the new variable belongs to the core(setC) if
not for one, but forat least twoof DM clauses,K−1 vari-
ables other than the new one are inC8. The probability of that

p = 1 −e−KgqK−1
− KgqK−1e−KgqK−1

; q − KgqK−1s1 − qd
s75d

is equal to the average value ofN8 /N, and the average con-
nectivity of the new vertex(under the condition that it is in
C) enables one to computeM8 /N8:

M8/N8 =
1

K

KgqK−1s1 − e−KgqK−1
d

1 − s1 + KgqK−1de−KgqK−1 ;
gqK

p
s76d

[better expressed asM8 /N=1/KKgqK−1s1−e−KgqK−1
d;gqK].

We must mention that the core forK-NAE SAT is in fact
identical to that forK-XOR SAT. The latter has been ana-
lyzed by a different method[27].

2. Positive 1-in-K SAT

The situation is slightly more interesting in case of posi-
tive 1-in-K SAT. Setting a variable that appears in only one
clause does not guarantee that the clause will be satisfied,
hence the clause cannot be eliminated. Although it cannot be
eliminated, it can still be simplified by eliminating the vari-
able. The remaining instance will contain not onlyK-clauses
but also onesK−1d-clause. The allowed combinations of
variables forsK−1d-clauses should be those that have sum of
variables equal toeither 0 or 1. In that case the value of the
deleted variable can always be adjusted so that the sum of
variables inK-clause is exactly 1.

Similarly, at some pointsK−1d-clauses can be converted
to sK−2d-clauses,sK−3d-clauses, down to 2-clauses. In each
case the allowed combinations shall have sum of spins either
0 or 1. Finally, if one can identify a variable that appears in
2-clauses exclusively, this variable can be eliminated to-
gether with corresponding 2-clauses, since setting it to 0
shall satisfy all these clauses. As an illustration, see Fig. 8
which depictsK=4.

Once again, one can write a trimming algorithm that
eliminates such variables and clauses. As before, one can
show that all remaining instances must have the property that
each variable appear in at least two clauses of any length and
at least one clause of length greater than two; and that for
fixed number of vertices N8, number of 2-clauses
M28 , . . . ,sK−1d-clausesMK−18 , K-clausesMK8 , all such in-
stances are equiprobable.

Without going into details(available in our upcoming pa-
per [28]), we should mention that the equations now involve
two variablesq and q8, owing to the separate treatment af-

FIG. 7. Example of trimming algorithm for 3-NAE SAT. Vari-
ables are represented graphically as vertices and clauses are repre-
sented as triangles. Incomplete triangles represent connections to
the remainder of the graph(not shown). Shaded clauses are re-
moved by the trimming algorithm.

FIG. 8. Example of trimming algorithm for 1-in-4 SAT. Vari-
ables are represented graphically as vertices and 4-, 3-, and
2-clauses are represented as rhombi, triangles and edges corre-
spondingly. Incomplete polygons represent connections to the re-
mainder of the graph. The figure depicts evolution of part of the
graph under the trimming algorithm.
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forded to 2-clauses and clauses of length greater than 2. The
self-consistency equations are

1 − q8 = e−Kgf1−s1 − qdK−1−sK−1dqs1 − qdK−2g, s77d

1 − q = s1 − q8de−KsK−1dgq8s1 − qdK−2
, s78d

with implicit understanding that the largest solutionsq, q8
are sought.

The expected values ofN8 as well asMk8 are given by

N8/N = q8 − Kgf1 − s1 − qdK−1 − sK − 1dqs1 − qdK−2gs1 − qd,

s79d

M28/N = SK

2
Dgq82s1 − qdK−2, s80d

Mk8/N = SK

k
Dgqks1 − qdK−k for k ù 3. s81d

Note that results for the core for positiveK-NAE SAT and
positive 1-in-K SAT allow for a compact formulation
through introduction of thegenerating functionof the al-
lowed variable degrees.

For the case ofK-NAE SAT it is Gsmd=odù2md/d!= em

−1−m, since degrees of all variables are at least 2. In terms
of this Gsmd, equations can be written as

N8/N = e−mGsmd, s82d

M8/N =
1

K
me−mG8smd s83d

with m=KgqK−1, and the equation onq is

q = e−mG8smd. s84d

For the case of 1-in-K SAT, G is a function ofsK−1d vari-
ables reflecting the fact that the degree of each vertex is a
vector sd2, . . . ,dKd where dk counts the number of appear-
ances of said variable ink-clauses. The generating function
for the remaining core is

Gsm2,m3, . . . ,mKd = expsoi=2

K
mid − em2 − o

i=3

K

mi . s85d

There appears a sethq2, . . . ,qKj such that qk

=s] /]mkdGshmijd. Obviously,q3=q4=¯ =qK. Setting

m2 = 2SK

2
Dgq8s1 − qdK−2, s86d

mk = kSK

k
Dgqk−1s1 − qdK−k for k ù 3, s87d

N8 andMk8 can be compactly written as

N8/N = exps− oi=2

K
midGshmijd, s88d

Mk8/N =
1

k
mkexps− oi=2

K
mid ]

]mk
Gshmijd. s89d

B. Improved annealing bound

Once irrelevant clauses have been removed we expect the
entropy at the satisfiability transition to be much closer to
zero. We have already made predictions for the number of
remaining variables and clauses after application of the trim-
ming algorithm starting from a random graph of connectivity
g. We can compute the entropy of the remaining core. Using
the critical connectivity at which the annealed entropy of the
core alone becomes 0 as an estimate of the satisfiability tran-
sition is an improvement over the traditional annealing ap-
proximation. We are motivated by two contributing factors:
(i) the rigorous mathematical proof that the disorder is rel-
evant for the satisfiability transition relies on the presence of
irrelevant clauses, hence their removal can sometimes make
disorder irrelevant, and(ii ) applied toK-XOR SAT, this im-
proved bound becomesexact[27].

Doing the annealing approximation on a core is hampered
by the fact that clauses can no longer be assumed uncorre-
lated. However, the technique we introduced in this paper is
well-suited for this example. The annealed entropy equals

sann=
1

N8
ln NS,G −

1

N8
ln NG, s90d

whereNG counts the number of possible disorders andNS,G
is the total number of allowed spin-disorder configurations.
We now separately considerK-NAE SAT and 1-in-K SAT.

1. Positive K-NAE SAT

Consider the number of possible disorder realizations
with N8 variables,M8 clauses, with the constraint that each
variable appear in at least two clauses. Each variable can be
characterized by the vectork with K components, each com-
ponentkp counting the number of clauses where said variable
appears in thepth position. Treating disorders that differ by
permuting different clauses or permuting variables within a
clause as different and fixing the fractions of vertices with a
particular realization ofk to ck, the normalized logarithm of
the count of possible disorders is

1

N8
ln NS,G ; s08fN8,M8;hckjg = − o

k
ck lnFckp

p

kp!G
+ K

M8

N8
ln M8. s91d

We must maximize this expression with respect tock subject
to the constraints

o
k

kpck = M8/N8 s92d

and thatck =0 for opkp,2.
Introducing Lagrange multipliersmp, the expression forck

becomes

ck =
1

GsSpmpdpp

mp
kp

kp!
. s93d

Echoing the constraint thatopkpù2, the normalization factor
is Gsopmpd where Gsxd=ex−1−x—the familiar generating
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function of the core. Using the dual transformation we can
rewrite the entropy as

s08fN8,M8g = min
mp
Ho

p

sM8/N8dln
M8/N8

mp
+ ln GSo

p

mpDJ
+

KM8

N8
ln N8. s94d

Comparing this expression with Eqs.(82) and (83) we ob-
serve that the minimum is achieved formp=s1/Kdm
;gqK−1, g being the connectivity of untrimmed random
graph.

Now we proceed to count all possible combinations of
spin assignments and disorder realizationsNS,G. Correspond-
ing entropy is in general a function ofhMa8 j whereMa8 is
the number of clauses with variables having values described
by a vectorhapj;a, divided byN8 so thatoaMa8 =M8 /N8.
In complete analogy with results of Sec. V A we obtain

s18fN8,M8;hMa8 j;hcs,kjg = − o
s,k

cs,k lnFcs,kp
p,a

ka
p!G

+ sK − 1do
a

Ma8 ln Ma8

+
M8

N8
ln

M8

N8
+

KM8

N8
ln N8.

s95d

Optimizing this with respect tocs,k subject to familiar con-
straints

o
s,k

ka
pcs,k = Ma s96d

and the constraint thatcs,k =0 if op,aka
p ,2, the expression

can be equivalently rewritten as

s18fN8,M8;hMa8 jg = min
ma

p
Ho

p,a
Ma8 ln

Ma8

ma
p + ln Zfhma

pjgJ
+

M8

N8
ln

M8

N8
− o

a

Ma8 ln Ma8

+
KM8

N8
ln N8, s97d

with Zfhma
pjg given instead by

Zfhma
pjg = GSo

p,a
dfap;1gma

pD + GSo
p,a

d fap;− 1gma
pD .

s98d

Labeling arguments bym+ andm−, respectively, allows us to
simplify this to

s18fhMa8 jg = min
m±

HM+8 ln
M+8

m+
+ M−8 ln

M−8

m−
+ lnfGsm+d

+ Gsm−dgJ +
M8

N8
ln

M8

N8
− o

a

Ma8 ln Ma8

+
KM8

N8
ln N8 s99d

with M+8=oasopd fap;1gdMa8 and M−8=oasopd fap;
−1gdMa8 .

The correct annealed entropy is given by the difference of
these expressions

sann8 fN8,M8;hMa8 jg = s18fN8,M8;hMa8 jg − s08fN8,M8g.

s100d

This enables us to find the improved bound on the satisfiabil-
ity threshold(whereHann=0) or to compute the most likely
values ofhMa8 j for a particular energyE.

Note that for positiveK-NAE SAT corrections to the
static threshold due to this improved approximation are
minute, since the transition happens at large connectivities,
where the simple annealing approximation adequately de-
scribes the transition.

2. Positive 1-in-K SAT

For 1-in-K SAT the derivation is quite similar. An impor-
tant addition is that the clauses can have any length from 2 to
K, hence indexk should reflect that fact. Since the calcula-
tions are similar in spirit, we shall only provide the results

s08fN8,hMk8jg = min
mk

Hk
Mk8

N8
ln

kMk8/N8

mk
+ ln GshmkjdJ

+ o
k=2

K
kMk8

N8
ln N8, s101d

with Gshmkjd=expsok=2
K mkd−emk−ok=3

K mk, and

s18 = min
mk,±
Ho

k=2

K SMk,+8 ln
Mk,+8

mk,+
+ Mk,−8 ln

Mk,−8

mk,−
D

+ lnfGshmk,+jd + Gshmk,−jdgJ + o
k=2

K

FMk8 ln Mk8

− o
a

Mk,a8 ln Mk,a8 G + o
k=2

K
kMk8

N8
ln N8, s102d

and the complete expression for the annealed entropy is

sann8 fN8,hMk8j;hMk,a8 jg = s18fhMk,a8 jg − s08fN8,hMk8jg.

s103d

The numerical predictions for the point where the entropy
becomes zero are provided in Table II.
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VIII. QAA ALOGORITHM ON A CORE:
EXTENDED LANDSCAPES

Once we have reexpressed the entropy on a reduced
graph, it is only natural to implement the quantum adiabatic
evolution directly on the reduced graph. Correspondingly, we
shall need to recompute the landscapes for the reduced
graph.

A. Positive K-NAE SAT

This case entails the least difficulty, since we can use the
same landscape parametershMa8 j, the difference being the
exclusion of the total spin from the list of parameters. The
central quantity—,8shMa8 jd—is still expressed in a similar
form:

,8shMa8 jd = o
s,k

cs,k expF1

2o
p,a

ka
pS ]sann8

]Ma8
−

]sann8

]Māsp,ad8 DG .

s104d

Notably, the sum overk is now restricted touk uù2. The
derivatives of the entropy are still

]sann8

]Ma8
= o

p

ln
Ma8

ma
p − ln Ma8 . s105d

For a, a8 differing in exactly one position, we shall have

1

2S ]sann8

]Ma8
−

]sann8

]Ma8
8 D =

1

2
ln

ma8
p

ma
p . s106d

Next, usingcs,k =s1/Zdsma
pdka

p
/ka

p!, for uk uù2 and Eq.(43),
we are able to write, in terms of generating functionGsmd:

,8shMa8 jd =
2

Z
GS o

ka,a8l

Îma
pma8

p D . s107d

SubstitutingMa8 /ma
p =Map

8 /map
, we can rewrite this as

,8shMa8 jd =
2

Gsm+d + Gsm−d

3GSÎ m+m−

M+8M−8
o

ka,a8l

ÎMa8Ma8
8 D .

s108d

Note that for the landscapes on the original graph without the

spin variable, this expression is valid withGsmd redefined to
be Gsmd=em.

B. Positive 1-in-K SAT

The notion of landscape parameters has to be generalized,
since clauses of any length can appear. Correspondingly, we
choose a sethMk,a8 j to serve as landscape parameters. In
contrast toK-NAE SAT, we have a total ofok=2

K sk+1d=sK
−1dsK−2d /2 parameters(with symmetries ofMk,a8 taken
into account).

The derivation of landscapes can be generalized to in-
clude several types of clauses. The final answer is itself a
generalization of Eq.(66)

,8shMk,a8 jd =
2

Gshmk,+jd + Gshmk,−jd

3GSHÎ mk,+mk,−

Mk,+Mk,−
o

ka,a8l

ÎMk,a8 Mk,a8
8 JD .

s109d

As beforeGshmkjd=expsoi=2
K mid−em2−oi=3

K mi.
We can exploit the symmetry ofMk,a8 to write

o
ka,a8l

ÎMk,a8 Mk,a8
8 = o

m=0

k−1

Îsm+ 1dsk − mdMk,m8 Mk,m+18 .

s110d

The same is possible forK-NAE SAT; in fact it is precisely
this form that is used in numerical calculations.

C. Numerical results

Here we provide the numerical results for the satisfiability
transition as determined by maximizing the entropy for en-
ergy E=0 and solvingsann8 =0. And we also list the location
of the dynamical transition, indicated by the global bifurca-
tion in f8=«8−G,8. All results are expressed in terms of the
connectivity of the original random graph for easy compari-
son with Table I.

We observed that this refinement of our analysis leavesgd
and gc of K-NAE SAT essentially unchanged. This is the
manifestation of the fact that if eitherK or g is large, then the
core is not much different from the original graph(i.e., that
q<1). In contrast, the difference for 1-in-K SAT is quite

TABLE II. Dynamic and static transition for positive 1-in-K SAT with the improved annealing approxi-
mation and with the old method usinghMmj as landscape parameters. The prediction ofgc8 for K=3 compares
favorably with the result of simulations ofgc8<0.63. No value(—) indicates the absence of a dynamical
transition.

K 3 4 5 6 7 8 9 10

Improved gd8 — — 0.535 0.469 0.421 0.379 0.344 0.317

gc 0.653 0.609 0.553 0.507 0.468 0.435 0.407 0.382

Old gd — 0.671 0.552 0.471 0.413 0.368 0.333 0.304

gc 0.805 0.676 0.609 0.548 0.500 0.461 0.428 0.400
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noticable. For consistency, we compare the location of the
dynamic phase transition computed on the core to that com-
puted on the original graph using onlyMm as landscape pa-
rameters(omitting total spin, as it is not among the param-
eters for computations performed on a core). We also include
new, better, bounds on the static transition. All results are
summarized in Table II and Fig. 9.

IX. CONCLUSION

We have formulated an ansatz of landscapes and studied
the complexity of the quantum adiabatic algorithm within the
annealing approximation and found the existence of a dy-
namic transition and a hard(exponential) region above that
dynamic transition. However, a similar analysis of simulated
annealing did not reveal any phase transitions. We explain
this as follows. The annealing approximation should fail for
sufficiently small energies. It is commonly known that simu-
lated annealing can find suboptimal solutions with very small
energies very efficiently, but it takes an exponentially long
time to actually reach the ground state. The annealing ap-
proximation does not correctly describe very small energies
and cannot be used to establish its complexity. Note that we
can reconcile this with the fact that the annealing approxi-
mation becomesexactin the limit when the number of bits in
a clauseK→`: if the annealing approximation fails for some
E&EK we expect thatEK is decreasing to zero asK in-
creases. However for any finiteK, the free energy computed
within the annealing approximation is free from any singu-
larities indicative of a phase transition. To study the com-
plexity of simulated annealing one needs to use the tools of
spin glass theory, in particular, the replica trick[25,26,29]
(see also below).

In contrast, in our analysis of the quantum adiabatic algo-
rithm, we observed a first-order phase transition, and, impor-
tantly, it happens for energiesE* =OsE`d [whereE` is the
expected energy at infinite temperature,E`=s1/2ndozEz].
Moreover, the energies on both sides of the transition, rela-
tive to E` seem not to change appreciably with increasingK.
Since the annealing approximation for this range of energies
can be used, the prediction for the dynamic transition should
survive, though the exact numerical values may acquire cor-
rections. We have recomputed the dynamic transition with

simplified energy-only landscapes(see Fig. 10). For 1-in-K
SAT one can clearly see that the relative correction quickly
diminishes. We believe that same happens forK-NAE SAT if
sufficiently largeK’s are considered. If this indeed holds, it
serves as a corroboration that our results are correct numeri-
cally for largeK. It should be noted that the large-K limit
corresponds to the so-called random energy model, where
one does not expect to perform better thenOs2Nd via any
quantum algorithm.

The idea of using energy-only landscapes was present in
[30] as well as[31] and[32]. A jump in the time-dependence
of the expected energy value was seen in numerical simula-
tions [7], indicative of a first-order phase transition, though a
different ensemble was considered(only instances having a
unique solution were considered).

We also attempted to go beyond a simple annealing ap-
proximation and studied the dynamical transition using its
refinement. For that we developed a polynomial mapping of
the optimization problem defined on a full graph onto the
problem defined on its subgraph(a core) where disorder-
related fluctuations are significantly reduced and the anneal-
ing approximation is expected to perform much better. As a
test we used the annealing approximation on a core to calcu-
late the positiongc of a static(satisfiability) transition where
the entropy of the state withE=0 vanishes. We also com-
puted gc numerically and found it to be very close to the
analytical result. We then studied the dynamics of the quan-
tum adiabatic evolution algorithm on a core using an ex-
tended set of landscape functions and found that the old re-
sults obtained on a full graph are reproduced qualitatively.
This supports our earlier prediction that the location of the
phase transition is not very sensitive to the exact nature of
annealing approximation employed.

We emphasize that the different versions of the annealing
approximation employed in this paper describe the phase
transition as a global bifurcation between two macroscopic
states(pure states) in the space of macroscopic variables de-
fined by a set of landscape functions. The complexity is due
to tunneling between the pure states. In contrast, spin glass
theory predicts the existence of an infinite number of pure
states[29] at sufficiently small energies. On the other hand,
as we mentioned above, the first-order quantum phase tran-
sition occurs for large energiesE* and this has been con-

FIG. 9. Static(circles) and dynamic(diamonds) transition for
various values ofK for positive 1-in-K SAT.

FIG. 10. Relative difference between the predictions for the dy-
namical phase transition point in the case of fullsgdd and energy-
only sgd

Ed landscapes vs ofK for 1-in-K SAT (circles) andK-NAE
SAT (squares).
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firmed with an improved annealing approximation.
Although the transition is seemingly absent for smallK, a

better approach(as compared to the annealing approxima-
tion) may reveal it. Moreover, we believe that if this happens
the order of the transition will remain unchanged, suggesting
that the disorder may be irrelevant for the determination of
the order of the phase transition and, consequently, for the
complexity of the quantum adiabatic algorithm. That is, the
exponential complexity is not due to the true combinatorial
complexity of the underlying random optimization problem
but rather due to peculiarities of the driver term and a par-
ticular ensemble of random instances considered.

A future extension of the present work is to include a
sufficiently large(possibly infinite) number of landscape pa-
rameters, thereby making the annealing approximation in-
creasingly precise. In this regard we recall that the 1-bit-flip
conditional distribution over landscape parameters employed
in this paper(43) can be expressed via the set of coefficients
hcs,kj that are concentrations of binary variables in a given
string with different typesss ,kd of an immediate neighbor-
hood. In fact, these coefficients themselves can be used in an
extended set of landscape parametersx. Then an appropriate
effective potentialfsx ,Gd can be introduced and its bifurca-
tion can be studied whenG varies from` to 0. Further-
more, one can consider introducing progressively larger sets
of landscape functions by defining neighborhoods of pro-
gressively larger size and using the well-known property that
local structure of a random(hyper)graph is tree-like[33].
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APPENDIX: ON THE NP-COMPLETENESS OF POSITIVE
1-IN-K SAT AND POSITIVE K-NAE-SAT

There exists a huge class ofNP-complete problems[1].
They possess a remarkable property: any instance of some
NP-complete problem can be converted into an instance of
some otherNP-complete problem efficiently[that is the size
of the new instance is bounded by the size of the original
instanceN raised to a finite powerp sNpd, and the time
needed to convert it is also polynomial inN].

For example the satisfiability problem and graph
K-coloring problem are bothNP-complete problems. For
each boolean formula we can build a graph that is

K-colorable if and only if the boolean formula is satisfiable,
and vice versa. It follows that if a polynomial algorithm is
invented to solve someNP-complete problem, it can be used
to solve allNP-complete problems.

A central NP-complete problem is satisfiability. An in-
stance of satisfiability is a set of clauses, where each clause is
a “logical or” s∨d of literals, each literal being either some
variablex or its negation¬x. For any problem whose solu-
tion can be verified in polynomial time, one can construct an
equivalent boolean formula. It is obvious for the problems at
hand. The challenge now is to show that any boolean for-
mula can be cast as some instance of either Positive 1-in-
K-Sat or PositiveK-NAE-SAT. It suffices to show that we
need only encode basic boolean operations, e.g.,z=¬sx∧yd.
We can trivially implement¬x=¬sx∧xd and z=x∨y is
implemented as¬s¬x∧ ¬yd. Therefore, a clause of arbitrary
length sx1∨ ¯ ∨xKd can be represented as follows:z1

=sx1∨x2d, z2=sz1∨x3d, up to z=szK−2∨xKd. Herez is true if
and only if the clause is satisfied. By usingz=sx∧yd
=¬(¬sx∧yd) in a similar fashion we implement “logical and”
s∧d of all clauses. In the following we demonstrate how to
encode the basic building blocks.

1. Positive 1-in-K-SAT

A clause of typesx, . . . ,x,yd necessarily impliesx=0 and
y=1; hence we can represent constants 0 and 1. A clause of
type s0, . . . ,0 ,x,yd implies x=¬y. Finally, a clause of type
s0, . . . ,0 ,x,y,zd is equivalent to a 3-clausesx,y,zd so that
we can restrict ourselves toK=3 without losing generality.

For K=3, immediately observe that three clauses
sx,z,u8dsy,z,u9dsu,u8 ,u9d with free variablesu, u8 , u9 im-
ply z=¬sx∧yd. This basic building block is in fact sufficient
to build any boolean formula, as a result, any boolean for-
mula can be cast as a 1-in-K SAT formula.

2. PositiveK-NAE-SAT

A clause of typesx, . . . ,x,yd necessarily impliesx=¬y,
and sx, . . . ,x,y,zd is equivalent tosx,y,zd so we once again
restrict ourselves toK=3. In contrast to the 1-in-K problem,
we shall require a nontrivial representation offalse or true.
We will use pairs of variables to denote variables of the
boolean formula. Pairs 00 or 11 will represent valuefalseand
pairs 01 or 10 will representtrue.

The next building block,sx,y,tdsy,z,tdsz,x,td ensures
that t=1 if the majority ofx,y,z are 0 andt=0 if the major-
ity are 1. We shall use a shorthandfst ;x,y,zd to denote this.
The expressionfsz1;x1,y1,y2dfsz2;x2,y1,y2d then ensuresz
=x∧y wherex,y,z are represented as pairsx1x2, y1y2, z1z2 as
indicated above. The operation of negation is trivial to rep-
resent: ifx;x1x2 then¬x;s¬x1dx2. These two are sufficient
to construct any boolean formula.
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